3 research outputs found

    Search for invisible modes of nucleon decay in water with the SNO+ detector

    Get PDF
    This paper reports results from a search for nucleon decay through 'invisible' modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of SNO+. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently de-excite, often emitting detectable gamma rays. A search for such gamma rays yields limits of 2.5×10292.5 \times 10^{29} y at 90% Bayesian credibility level (with a prior uniform in rate) for the partial lifetime of the neutron, and 3.6×10293.6 \times 10^{29} y for the partial lifetime of the proton, the latter a 70% improvement on the previous limit from SNO. We also present partial lifetime limits for invisible dinucleon modes of 1.3×10281.3\times 10^{28} y for nnnn, 2.6×10282.6\times 10^{28} y for pnpn and 4.7×10284.7\times 10^{28} y for pppp, an improvement over existing limits by close to three orders of magnitude for the latter two

    The complete mitogenome of the invasive Japanese mud snail Batillaria attramentaria (Gastropoda: Batillariidae) from Elkhorn Slough, California, USA

    No full text
    Genomic analysis of the invasive marine snail Batillaria attramentaria from Elkhorn Slough, Moss Landing, California, USA using 150 bp paired-end Illumina sequences resulted in the assembly of its complete mitogenome. The mitogenome is 16,095 bp in length and contains 2 rRNA, 13 protein-coding, and 22 tRNA genes (GenBank Accession MN557850). Gene content and organization of B. attramentaria are identical to the Turritellidae and Pachychilidae. The phylogenetic analysis of B. attramentaria resolves it in a fully supported clade with these same two families in the superfamily Cerithioidea. Nucleotide BLAST searches of the Elkhorn Slough cox1 gene of B. attramentaria yielded identical sequences from invasive populations from California and British Columbia, and native populations from northeastern and central Japan. These data show that mitogenome sequencing is a useful tool for studying the classification and phylogenetic history Cerithioidea

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore