17 research outputs found

    Dont Add, dont Miss: Effective Content Preserving Generation from Pre-Selected Text Spans

    Full text link
    The recently introduced Controlled Text Reduction (CTR) task isolates the text generation step within typical summarization-style tasks. It does so by challenging models to generate coherent text conforming to pre-selected content within the input text (``highlights''). This framing enables increased modularity in summarization-like tasks, allowing to couple a single CTR model with various content-selection setups and modules. However, there are currently no reliable CTR models, while the performance of the existing baseline for the task is mediocre, falling short of practical utility. Here, we address this gap by introducing a high-quality, open-source CTR model that tackles two prior key limitations: inadequate enforcement of the content-preservation constraint, and suboptimal silver training data. Addressing these, we amplify the content-preservation constraint in both training, via RL, and inference, via a controlled decoding strategy. Further, we substantially improve the silver training data quality via GPT-4 distillation. Overall, pairing the distilled dataset with the highlight-adherence strategies yields marked gains over the current baseline, of up to 30 ROUGE-L points, providing a reliable CTR model for downstream use.Comment: EMNLP 2023, finding

    Stop Uploading Test Data in Plain Text: Practical Strategies for Mitigating Data Contamination by Evaluation Benchmarks

    Full text link
    Data contamination has become prevalent and challenging with the rise of models pretrained on large automatically-crawled corpora. For closed models, the training data becomes a trade secret, and even for open models, it is not trivial to detect contamination. Strategies such as leaderboards with hidden answers, or using test data which is guaranteed to be unseen, are expensive and become fragile with time. Assuming that all relevant actors value clean test data and will cooperate to mitigate data contamination, what can be done? We propose three strategies that can make a difference: (1) Test data made public should be encrypted with a public key and licensed to disallow derivative distribution; (2) demand training exclusion controls from closed API holders, and protect your test data by refusing to evaluate without them; (3) avoid data which appears with its solution on the internet, and release the web-page context of internet-derived data along with the data. These strategies are practical and can be effective in preventing data contamination.Comment: Accepted to EMNLP 202

    Transformer Feed-Forward Layers Build Predictions by Promoting Concepts in the Vocabulary Space

    Full text link
    Transformer-based language models (LMs) are at the core of modern NLP, but their internal prediction construction process is opaque and largely not understood. In this work, we make a substantial step towards unveiling this underlying prediction process, by reverse-engineering the operation of the feed-forward network (FFN) layers, one of the building blocks of transformer models. We view the token representation as a changing distribution over the vocabulary, and the output from each FFN layer as an additive update to that distribution. Then, we analyze the FFN updates in the vocabulary space, showing that each update can be decomposed to sub-updates corresponding to single FFN parameter vectors, each promoting concepts that are often human-interpretable. We then leverage these findings for controlling LM predictions, where we reduce the toxicity of GPT2 by almost 50%, and for improving computation efficiency with a simple early exit rule, saving 20% of computation on average

    The Curious Case of Hallucinatory (Un)answerability: Finding Truths in the Hidden States of Over-Confident Large Language Models

    Full text link
    Large language models (LLMs) have been shown to possess impressive capabilities, while also raising crucial concerns about the faithfulness of their responses. A primary issue arising in this context is the management of (un)answerable queries by LLMs, which often results in hallucinatory behavior due to overconfidence. In this paper, we explore the behavior of LLMs when presented with (un)answerable queries. We ask: do models represent the fact that the question is (un)answerable when generating a hallucinatory answer? Our results show strong indications that such models encode the answerability of an input query, with the representation of the first decoded token often being a strong indicator. These findings shed new light on the spatial organization within the latent representations of LLMs, unveiling previously unexplored facets of these models. Moreover, they pave the way for the development of improved decoding techniques with better adherence to factual generation, particularly in scenarios where query (un)answerability is a concern.Comment: EMNLP 202
    corecore