25 research outputs found

    Approximate entropy analysis across electroencephalographic rhythmic frequency bands during physiological aging of human brain

    No full text
    Aging is the inevitable biological process that results in a progressive structural and functional decline associated with alterations in the resting/task-related brain activity, morphology, plasticity, and functionality. In the present study, we analyzed the effects of physiological aging on the human brain through entropy measures of electroencephalographic (EEG) signals. One hundred sixty-one participants were recruited and divided according to their age into young (n = 72) and elderly (n = 89) groups. Approximate entropy (ApEn) values were calculated in each participant for each EEG recording channel and both for the total EEG spectrum and for each of the main EEG frequency rhythms: delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-11 Hz), alpha 2 (11-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-45 Hz), to identify eventual statistical differences between young and elderly. To demonstrate that the ApEn represents the age-related brain changes, the computed ApEn values were used as features in an age-related classification of subjects (young vs elderly), through linear, quadratic, and cubic support vector machine (SVM). Topographic maps of the statistical results showed statistically significant difference between the ApEn values of the two groups found in the total spectrum and in delta, theta, beta 2, and gamma. The classifiers (linear, quadratic, and cubic SVMs) revealed high levels of accuracy (respectively 93.20 ± 0.37, 93.16 ± 0.30, 90.62 ± 0.62) and area under the curve (respectively 0.95, 0.94, 0.93). ApEn seems to be a powerful, very sensitive-specific measure for the study of cognitive decline and global cortical alteration/degeneration in the elderly EEG activity

    Small World derived index to distinguish Alzheimer’s type dementia and healthy subjects

    No full text
    Background: This article introduces a novel index aimed at uncovering specific brain connectivity patterns associated with Alzheimer's disease (AD), defined according to neuropsychological patterns. Methods: Electroencephalographic (EEG) recordings of 370 people, including 170 healthy subjects and 200 mild-AD patients, were acquired in different clinical centres using different acquisition equipment by harmonising acquisition settings. The study employed a new derived Small World (SW) index, SWcomb, that serves as a comprehensive metric designed to integrate the seven SW parameters, computed across the typical EEG frequency bands. The objective is to create a unified index that effectively distinguishes individuals with a neuropsychological pattern compatible with AD from healthy ones. Results: Results showed that the healthy group exhibited the lowest SWcomb values, while the AD group displayed the highest SWcomb ones. Conclusions: These findings suggest that SWcomb index represents an easy-to-perform, low-cost, widely available and non-invasive biomarker for distinguishing between healthy individuals and AD patients
    corecore