19,503 research outputs found

    Phi meson mass and decay width in nuclear matter

    Get PDF
    The ϕ\phi meson spectrum, which in vacuum is dominated by its coupling to the KˉK\bar{K} K system, is modified in nuclear matter. Following a model based on chiral SU(3) dynamics we calculate the ϕ\phi meson selfenergy in nuclear matter considering the KK and Kˉ\bar{K} in-medium properties. For the latter we use the results of previous calculations which account for SS- and PP-wave kaon-nucleon interactions based on the lowest order meson-baryon chiral effective Lagrangian, and this leads to a dressing of the kaon propagators in the medium. In addition, a set of vertex corrections is evaluated to fulfill gauge invariance, which involves contact couplings of the ϕ\phi meson to SS-wave and PP-wave kaon-baryon vertices. Within this scheme the mass shift and decay width of the ϕ\phi meson in nuclear matter are studied.Comment: 19 pages, 10 figures in EPS format, revtex4; One section modified, some references update

    2GHz MIMO channel model from experimental outdoor data analysis in UMTS

    Get PDF
    The key objective of this work was to obtain a MIMO model for a line of sight (LOS) channel component as well as the covariance matrix for a non-LOS deployment. A maximum likelihood criteria is applied to obtain a LOS spatial signature vector and a NLOS covariance matrix derived from channel measurements taken in the 2 GHz UMTS spectrum for an urban deployment in Bristol (UK). Different user equipment deployments were considered to represent both LOS and NLOS, as well as static and dynamic (motion) situations. The parameters of interest were estimated from these data and the fitness model was satisfactorily evaluated in all cases. Further, the Kronecker product between transmitter and receiver matrices was evaluated in order to simplify the model, for both, LOS and NLOS cases, including polarization diversity cases.The key objective of this work was to obtain a MIMO model for a line of sight (LOS) channel component as well as the covariance matrix for a non-LOS deployment. A maximum likelihood criteria is applied to obtain a LOS spatial signature vector and a NLOS covariance matrix derived from channel measurements taken in the 2 GHz UMTS spectrum for an urban deployment in Bristol (UK). Different user equipment deployments were considered to represent both LOS and NLOS, as well as static and dynamic (motion) situations. The parameters of interest were estimated from these data and the fitness model was satisfactorily evaluated in all cases. Further, the Kronecker product between transmitter and receiver matrices was evaluated in order to simplify the model, for both, LOS and NLOS cases, including polarization diversity cases

    Limits to the presence of transiting circumbinary planets in CoRoT data

    Get PDF
    The CoRoT mission during its flight-phase 2007-2012 delivered the light-curves for over 2000 eclipsing binaries. Data from the Kepler mission have proven the existence of several transiting circumbinary planets. Albeit light-curves from CoRoT have typically lower precision and shorter coverage, CoRoT's number of targets is similar to Kepler, and some of the known circumbinary planets could potentially be detected in CoRoT data as well. The aim of this work has been a revision of the entire CoRoT data-set for the presence of circumbinary planets, and the derivation of limits to the abundances of such planets. We developed a code which removes the light curve of the eclipsing binaries and searches for quasi-periodic transit-like features in a light curve after removal of binary eclipses and instrumental features. The code needs little information on the sample systems and can be used for other space missions as well, like Kepler, K2, TESS and PLATO. The code is broad in the requirements leading to detections, but was tuned to deliver an amount of detections that is manageable in a subsequent, mainly visual, revision about their nature. In the CoRoT sample we identified three planet candidates whose transits would have arisen from a single pass across the central binary. No candidates remained however with transit events from multiple planetary orbits. We calculated the upper limits for the number of Jupiter, Saturn and Neptune sized planets in co-planar orbits for different orbital period ranges. We found that there are much less giant planets in short-periodic orbits around close binary systems than around single stars.Comment: Accepted for publication in A&A, 11 pages, 4 figures and 4 tables. Updated to fix error in acknowledgemen

    Formation of ϕ\phi mesic nuclei

    Full text link
    We study the structure and formation of the ϕ\phi mesic nuclei to investigate the in-medium modification of the ϕ\phi-meson spectral function at finite density. We consider (pˉ,ϕ{\bar p},\phi), (γ,p\gamma,p) and (π,n\pi^-,n) reactions to produce a ϕ\phi-meson inside the nucleus and evaluate the effects of its medium modifications to the reaction cross sections. We also estimate the consequences of the uncertainties of the Kˉ{\bar K} selfenergy in medium to the ϕ\phi-nucleus interaction. We find that it may be possible to see a peak structure in the reaction spectra for the strong attractive potential cases. On the other hand, for strong absorptive interaction cases with relatively weak attractions, it is very difficult to observe clear peaks and we may need to know the spectrum shape in a wide energy region to deduce the properties of ϕ\phi.Comment: 11 pages, 8 figure

    Boltzmann entropy of a Newtonian Universe

    Full text link
    A dynamical estimate is given for the Boltzmann entropy of the Universe, under the simplifying assumptions provided by Newtonian cosmology. We first model the cosmological fluid as the probability fluid of a quantum-mechanical system. Next, following current ideas about the emergence of spacetime, we regard gravitational equipotentials as isoentropic surfaces. Therefore gravitational entropy is proportional to the vacuum expectation value of the gravitational potential in a certain quantum state describing the matter contents of the Universe. The entropy of the matter sector can also be computed. While providing values of the entropy that turn out to be somewhat higher than existing estimates, our results are in perfect compliance with the upper bound set by the holographic principle.Comment: 15 page

    New mechanism for impurity-induced step bunching

    Full text link
    Codeposition of impurities during the growth of a vicinal surface leads to an impurity concentration gradient on the terraces, which induces corresponding gradients in the mobility and the chemical potential of the adatoms. Here it is shown that the two types of gradients have opposing effects on the stability of the surface: Step bunching can be caused by impurities which either lower the adatom mobility, or increase the adatom chemical potential. In particular, impurities acting as random barriers (without affecting the adatom binding) cause step bunching, while for impurities acting as random traps the combination of the two effects reduces to a modification of the attachment boundary conditions at the steps. In this case attachment to descending steps, and thus step bunching, is favored if the impurities bind adatoms more weakly than the substrate.Comment: 7 pages, 3 figures. Substantial revisions and correction
    corecore