13,820 research outputs found

    Trion dynamics in coupled double quantum wells. Electron density effects

    Full text link
    We have studied the coherent dynamics of injected electrons when they are either free or bounded both in excitons and in trions (charged excitons). We have considered a remotely doped asymmetric double quantum well where an excess of free electrons and the direct created excitons generate trions. We have used the matrix density formalism to analyze the electron dynamics for different concentration of the three species. Calculations show a significant modification of the free electron inter-sublevel oscillations cWe have studied the coherent dynamics of injected electrons when they are aused by electrons bound in excitons and trions. Based on the present calculations we propose a method to detect trions through the emitted electromagnetic radiation or the current density.Comment: 14 pages, 13 figure

    Temporal stimulated intersubband emission of photoexcited electrons

    Full text link
    We have studied the transient evolution of electrons distributed over two levels in a wide quantum well, with the two levels below the optical phonon energy, after an ultrafast interband excitation and cascade emission of optical phonons. If electrons are distributed near the top of the passive region, a temporal negative absorption appears to be dominant in the intersubband response. This is due to the effective broadening of the upper level state under the optical phonon emission. We have then considered the amplification of the ground mode in a THz waveguide with a multiquantum well placed at the center of the cavity. A huge increase of the probe signal is obtained, which permits the temporal stimulated emission regime of the photoexcited electrons in the THz spectral region.Comment: 5 pages, 5 figures, brief repor

    Transient quantum evolution of 2D electrons under photoexcitation of a deep center

    Full text link
    We have considered the ballistic propagation of the 2D electron Wigner distribution, which is excited by an ultrashort optical pulse from a short-range impurity into the first quantized subband of a selectively-doped heterostructure with high mobility. Transient ionization of a deep local state into a continuum conduction c-band state is described. Since the quantum nature of the photoexcitation, the Wigner distribution over 2D plane appears to be an alternating-sign function. Due to a negative contribution to the Wigner function, the mean values (concentration, energy, and flow) demonstrate an oscillating transient evolution in contrast to the diffusive classical regime of propagation.Comment: 8 pages, 6 figures, pape

    Coherent oscillations of electrons in tunnel-coupled wells under ultrafast intersubband excitation

    Full text link
    Ultrafast intersubband excitation of electrons in tunnell-coupled wells is studied depending on the structure parameters, the duration of the infrared pump and the detuning frequency. The temporal dependencies of the photoinduced concentration and dipole moment are obtained for two cases of transitions: from the single ground state to the tunnel-coupled excited states and from the tunnel-coupled states to the single excited state. The peculiarities of dephasing and population relaxation processes are also taken into account. The nonlinear regime of the response is also considered when the splitting energy between the tunnel-coupled levels is renormalized by the photoexcited electron concentration. The dependencies of the period and the amplitude of oscillations on the excitation pulse are presented with a description of the nonlinear oscillations damping.Comment: 8 pages, 12 figure

    An archaeology of borders: qualitative political theory as a tool in addressing moral distance

    Get PDF
    Interviews, field observations and other qualitative methods increasingly are being used to inform the construction of arguments in normative political theory. This article works to demonstrate the strong salience of some kinds of qualitative material for cosmopolitan arguments to extend distributive boundaries. The incorporation of interviews and related qualitative material can make the moral claims of excluded others more vivid and possibly more difficult to dismiss by advocates of strong priority to compatriots in distributions. Further, it may help to promote the kind of perspective taking that has been associated with actually motivating a willingness to aid by individuals. Illustrative findings are presented from field work conducted for a normative project on global citizenship, including interviews with unauthorized immigrants and the analysis of artifacts left behind on heavily used migrant trails

    Disintegration of Magnetic Flux in Decaying Sunspots as Observed with the Hinode SOT

    Full text link
    Continuous observations of sunspot penumbrae with the Solar Optical Telescope aboard \textit{Hinode} clearly show that the outer boundary of the penumbra fluctuates around its averaged position. The penumbral outer boundary moves inward when granules appear in the outer penumbra. We discover that such granules appear one after another while moving magnetic features (MMFs) are separating from the penumbral ``spines'' (penumbral features that have stronger and more vertical fields than those of their surroundings). These granules that appear in the outer penumbra often merge with bright features inside the penumbra that move with the spines as they elongate toward the moat region. This suggests that convective motions around the penumbral outer boundary are related to the disintegration of magnetic flux in the sunspot. We also find that dark penumbral filaments frequently elongate into the moat region in the vicinity of MMFs that detach from penumbral spines. Such elongating dark penumbral filaments correspond to nearly horizontal fields extending from the penumbra. Pairs of MMFs with positive and negative polarities are sometimes observed along the elongating dark penumbral filaments. This strongly supports the notion that such elongating dark penumbral filaments have magnetic fields with a ``sea serpent''-like structure. Evershed flows, which are associated with the penumbral horizontal fields, may be related to the detachment of the MMFs from the penumbral spines, as well as to the formation of the MMFs along the dark penumbral filaments that elongate into the moat region.Comment: Accepted for publication in Ap

    Microstructure and Mechanical Properties of AA6082-T6 by ECAP Under Warm Processing

    Get PDF
    An AA6082 alloy deformed by equal channel angular pressing (ECAP) was studied. Microstructural evolution of the alloy processed by ECAP with different passes were evaluated by using optical microscope, scanning electron microscopy coupled with an electron backscattered diffraction (EBSD) detector and X-ray diffraction. Texture analysis showed the apparition of two types of textures, one associated with shearing deformation and the second due to the recrystallization phenomena. Mechanical strength properties measured by tensile tests increased in the first ECAP pass, and then progressively diminished due to the presence of concurrent softening phenomena. Calorimetric analysis indicated a slightly increase in the recrystallization temperature of the deformed specimens. Also, the stored energy increased with increasing ECAP passes due to the production of new dislocations. The average geometrically necessary dislocation density, measured by EBSD, increased with increasing ECAP passes. However, the rate of increase slows down with the progress of ECAP passes.Fil: Khelfa, T.. Northwestern Polytechnical University; China. University of Sfax; TúnezFil: Muñoz Bolaños, Jairo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Universidad Politécnica de Catalunya; EspañaFil: Li, F.. Northwestern Polytechnical University; ChinaFil: Cabrera -Marrero, J. M.. Universidad Politécnica de Catalunya; EspañaFil: Khitouni, M.. University of Sfax; Túne

    Oxidation mechanism in metal nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters

    Full text link
    Zn nanoclusters (NCs) are deposited by Low-energy cluster beam deposition technique. The mechanism of oxidation is studied by analysing their compositional and morphological evolution over a long span of time (three years) due to exposure to ambient atmosphere. It is concluded that the mechanism proceeds in two steps. In the first step, the shell of ZnO forms over Zn NCs rapidly up to certain limiting thickness: with in few days -- depending upon the size -- Zn NCs are converted to Zn-ZnO (core-shell), Zn-void-ZnO, or hollow ZnO type NCs. Bigger than ~15 nm become Zn-ZnO (core-shell) type: among them, NCs above ~25 nm could able to retain their initial geometrical shapes (namely triangular, hexagonal, rectangular and rhombohedral), but ~25 to 15 nm size NCs become irregular or distorted geometrical shapes. NCs between ~15 to 5 nm become Zn-void-ZnO type, and smaller than ~5 nm become ZnO hollow sphere type i.e. ZnO hollow NCs. In the second step, all Zn-void-ZnO and Zn-ZnO (core-shell) structures are converted to hollow ZnO NCs in a slow and gradual process, and the mechanism of conversion proceeds through expansion in size by incorporating ZnO monomers inside the shell. The observed oxidation behaviour of NCs is compared with theory of Cabrera - Mott on low-temperature oxidation of metal.Comment: 9 pages, 8 figure

    CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star

    Get PDF
    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (m_V = 16) candidate revealed an eclipsing binary composed of a late F-type primary (T_eff = 6090 +/- 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 +/- 0.011 M_Sun, and a radius of 0.104 +0.026/-0.006 R_Sun, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5%-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models.Comment: Accepted for publication in Astronomy & Astrophysics, 8 pages, 10 figure
    • …
    corecore