71 research outputs found
Mechanisms of antagonism of Pseudomonas fluorescens EPS62e against Erwinia amylovora, the causal agent of fire blight
Pseudomonas fluorescens EPS62e was selected during a screening procedure for its high efficacy in controlling infections by Erwinia amylovora, the causal agent of fire blight disease, on different plant materials. In field trials carried out in pear trees during bloom, EPS62e colonized flowers until the carrying capacity, providing a moderate efficacy of fire-blight control. The putative mechanisms of EPS62e antagonism against E. amylovora were studied. EPS62e did not produce antimicrobial compounds described in P. fluorescens species and only developed antagonism in King’s B medium, where it produced siderophores. Interaction experiments in culture plate wells including a membrane filter, which physically separated the cultures, confirmed that inhibition of E. amylovora requires cell-to-cell contact. The spectrum of nutrient assimilation indicated that EPS62e used significantly more or different carbon sources than the pathogen. The maximum growth rate and affinity for nutrients in immature fruit extract were higher in EPS62e than in E. amylovora, but the cell yield was similar. The fitness of EPS62e and E. amylovora was studied upon inoculation in immature pear fruit wounds and hypanthia of intact flowers under controlled-environment conditions. When inoculated separately, EPS62e grew faster in flowers, whereas E. amylovora grew faster in fruit wounds because of its rapid spread to adjacent tissues. However, in preventive inoculations of EPS62e, subsequent growth of EPS101 was significantly inhibited. It is concluded that cell-to-cell interference as well as differences in growth potential and the spectrum and efficiency of nutrient use are mechanisms of antagonism of EPS62e against E. amylovora. [Int Microbiol 2007; 10(2):123-132
Antimicrobial peptide genes in Bacillus strains from plant environments
The presence of the antimicrobial peptide (AMP) biosynthetic genes srfAA (surfactin), bacA (bacylisin), fenD (fengycin), bmyB (bacyllomicin), spaS (subtilin), and ituC (iturin) was examined in 184 isolates of Bacillus spp. obtained from plant environments (aerial, rhizosphere, soil) in the Mediterranean land area of Spain. Most strains had between two and four AMP genes whereas strains with five genes were seldom detected and none of the strains had six genes. The most frequent AMP gene markers were srfAA, bacA, bmyB, and fenD, and the most frequent genotypes srfAA-bacA-bmyB and srfAAbacA-bmyB-fenD. The dominance of these particular genes in Bacillus strains associated with plants reinforces the competitive role of surfactin, bacyllomicin, fengycin, and bacilysin in the fitness of strains in natural environments. The use of these AMP gene markers may assist in the selection of putative biological control agents of plant pathogens
Improvement of Alternaria Leaf Blotch and Fruit Spot of Apple Control through the Management of Primary Inoculum
Alternaria spp. is the causal agent of apple leaf blotch and fruit spot, diseases of recent appearance in Spain. The overwinter inoculum of Alternaria spp. is the source of primary infections in apple, thus the aim of this work was to optimize the control of infection through two environmentally friendly inoculum-management strategies, the removal of winter fallen leaves and the treatment of leaves with the biological agent Trichoderma asperellum to inhibit or prevent inoculum development in commercial orchards. The results of commercial orchard trials showed that leaf aspiration and application of T. asperellum on the ground have efficacy to reduce fruit spot between 50 and 80% and leaf blotch of between 30 and 40% depending on the year. The efficacies on the reduction of leaf blotch were slightly lower than of fruit spot. Disease reduction has been related to a reduction of total spores released during the season. Results of dynamics of spore release indicate that factors influencing spore release were rainfall and temperature. In conclusion, the use of environmentally friendly strategies combined with standard fungicides, and with monitoring environmental conditions, might allow a reduction in the number of phytosanitary applications, thus achieving the goal of reducing their use.info:eu-repo/semantics/publishedVersio
First Report of Colletotrichum chrysophilum Causing Apple Bitter Rot in Spain
Bitter rot of apple (Malus × domestica Borkh.) is a cosmopolitan disease affecting fruit and causes considerable losses worldwide. In September 2020, symptoms of bitter rot were observed on ‘Pink Lady’ apples in two orchards (~2.5 ha each) in Gualta, Catalonia, Spain (42.03803 N, 3.09831 E, and 42.03942 N, 3.10931 E). Early symptoms consisted of light brown and sunken circular lesions (1-4 mm) that enlarged over time, later becoming dark brown and water soaked, and extending cone-shaped toward the core. Sporulation was mostly noticed in larger lesions. Estimated incidence was 2% and 20% of 150 trees surveyed in each orchard, respectively. Twenty-one fungal isolates were obtained from diseased fruit by culturing small pieces of necrotic tissue on potato dextrose agar (PDA) amended with rifampicin at 50 mg/liter. Colonies on PDA looked identical. They were cottony, initially light-gray colored on top and darkening with age; colony reverse initially cream colored and darkening with age. Conidia were produced in orange acervular masses on Spezieller Nährstoffarmer Agar, and were aseptate, hyaline, cylindrical with obtuse ends, and measuring 10.1 to 14.7 × 4.5 to 7.1 μm (average 13.1 ± 1.04 × 5.3 ± 0.67 μm [mean ± SD], n = 50), with a mean length/width ratio 2.6 ± 0.39 (n = 16 isolates). Perithecia were not observed. Based on the conidial morphology, the isolates were tentatively identified as belonging to the Colletotrichum gloeosporioides species complex (Weir et al. 2012). Total genomic DNA was extracted from all isolates and six nuclear regions were amplified and partially sequenced: the internal transcribed spacer region of rDNA (ITS), the mating type protein 1-2-1 gene and the Mat1-2-1-Apn2 intergenic spacer region (ApMAT), actin (ACT), calmodulin (CAL), glyceraldehyde 3-P dehydrogenase (GAPDH), and tubulin (TUB2). The sequences for each region were 100% identical across all isolates. BLAST searches in GenBank showed 99-100% identity with sequences of various C. chrysophilum W.A.S. Vieira, W.G. Lima, M.P.S. Câmara & V.P. Doyle strains including the ex-type CMM4268 (Vieira et al. 2017). Sequences of the representative isolate CJL1080 were deposited in GenBank (ACT, MZ488944; ApMAT, MZ442299; CAL, MZ488945; GAPDH, MZ488946; ITS, MZ443972; TUB2, MZ442300). A multilocus phylogenetic analysis through Bayesian inference conducted with the obtained sequences and reference ones (Khodadadi et al. 2020) revealed that our isolates clustered well within C. chrysophilum, as suggested by BLAST results. To confirm Koch’s postulates, isolates CJL1080 and CJL1095 were inoculated on ‘Pink Lady’ apples. Six surface-sterilized fruits per isolate were wound-inoculated four times each with either 20 μl of a conidial suspension (105 conidia/ml) or sterile distilled water (control). After 7 days of incubation in a moist chamber at 22°C, symptoms compatible with Colletotrichum infection were observed around the wounds, whereas control inoculations remained symptomless. The fungus was reisolated from all the lesions and identified through its morphological traits and DNA sequencing (ApMat, CAL, and GAPDH). No fungus was isolated from the controls. Taxa of the C. gloeosporioides species complex causing bitter rot have been recently reported in Europe (Grammen et al. 2019; Nodet et al. 2019). This is the first report of C. chrysophilum causing apple bitter rot in Spain, which expands the knowledge on the geographic distribution of this important pathogen of apple in Europe.info:eu-repo/semantics/publishedVersio
Eficà cia dels productes bioestimulants en el cultiu de blat tou
info:eu-repo/semantics/publishedVersio
Las principales enfermedades del almendro en Cataluña
En els últims anys, el cultiu de l’ametlla està experimentant una conjuntura molt favorable arreu del món, impulsada per una demanda creixent. Catalunya no n’és una excepció, on les plantacions d’ametller ocupen 33.000 ha. L’augment de la producció s’ha pogut aconseguir grà cies a la intensificació del cultiu, mitjançant l’ús de sistemes de regadiu i noves varietats. Aquests canvis han comportat que hi hagi una preocupació més gran del sector productor per les malalties causades per bacteris, fongs i oomicets. En aquest treball fem un resum dels trets més importants de les diferents malalties de l’ametller que es troben —o que podrÃem trobar en un futur proper— a Catalunya.Almond production has increased worldwide in recent years, driven by growing demand. This increase has also occurred in Catalonia, where almond orchards cover 33,000 hectares. The increase in production has been achieved by introducing irrigation systems and new varieties into commercial orchards. The change towards a more intensive cultivation system has brought an array of new diseases caused by bacteria, fungi, and oomycetes. In this paper we summarize the most prevalent diseases that are currently affecting almond orchards in Catalonia or that could become more important in future.En los últimos años, el cultivo de la almendra está experimentando una coyuntura muy favorable en todo el mundo, impulsada por una demanda creciente. Cataluña no es una excepción, donde las plantaciones de almendro ocupan 33.000 ha. El aumento de la producción se ha conseguido gracias a la intensificación del cultivo, mediante el uso de sistemas de regadÃo y nuevas variedades. Estos cambios han llevado a una mayor preocupación del sector productor por las enfermedades causadas por bacterias, hongos y oomicetos. En este trabajo presentamos un resumen de las caracterÃsticas más importantes de distintas enfermedades del almendro que se encuentran —o que se podrÃan encontrar en un futuro cercano— en Cataluña
Erwinia amylovora Novel Plasmid pEI70: Complete Sequence, Biogeography, and Role in Aggressiveness in the Fire Blight Phytopathogen
Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5–92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora
Bioformulation of microbial biocontrol agents for a sustainable agriculture
The application of microbial based biopesticides has become a sustainable alternative to the use of chemicals to prevent yield losses due to plant pathogens. However, microbial based biopesticides are often unsuccessfully formulated and do not meet the demanding regulatory standards required by the agencies, which hinders their commercialization. Hence, an outline on the approaches to attain more effective formulations might be useful for the development of future more effective products.
With this aim, this chapter reports the current state of biocontrol strategies and describes the principles of microbial biocontrol formulations. Emphasis is placed on techniques and tools available for the development and characterisation of microbial products. To provide glimpses on the possible formulations, the different existing additives, carriers, inoculation techniques and formulation types are exhaustively reviewed. Finally, requirements and principles for efficacy evaluation of plant protection products in the European Union are include
Control of Propionibacterium acnes by natural antimicrobial substances: Role of the bacteriocin AS-48 and lysozyme
We report the high susceptibility of several clinical isolates of Propionibacterium acnes from different
sources (skin, bone, wound exudates, abscess or blood contamination) to the head-to-tail cyclized
bacteriocin AS-48. This peptide is a feasible candidate for further pharmacological development against
this bacterium, due to its physicochemical and biological characteristics, even when it is growing in a
biofilm. Thus, the treatment of pre-formed biofilms with AS-48 resulted in a dose- and time-dependent
disruption of the biofilm architecture beside the decrease of bacterial viability. Furthermore, we
demonstrated the potential of lysozyme to bolster the inhibitory activity of AS-48 against P. acnes,
rendering high reductions in the MIC values, even in matrix-growing cultures, according to the results
obtained using a range of microscopy and bioassay techniques. The improvement of the activity of
AS-48 through its co-formulation with lysozyme may be considered an alternative in the control of P.
acnes, especially after proving the absence of cytotoxicity demonstrated by these natural compounds
on relevant human skin cell lines. In summary, this study supports that compositions comprising the
bacteriocin AS-48 plus lysozyme must be considered as promising candidates for topical applications
with medical and pharmaceutical purposes against dermatological diseases such as acne vulgaris.This research was funded by a grant
from the Spanish Ministry of Economy and Competitiveness (SAF2013-48971-C2-1-R that included funds from
European Regional Development, ERDF), and the Research Group General (BIO160, UGR)
- …