43 research outputs found

    Methodological issues in cross-cultural research

    Get PDF
    Regardless of whether the research goal is to establish cultural universals or to identify and explain cross-cultural differences, researchers need measures that are comparable across different cultures when conducting cross-cultural studies. In this chapter, we describe two major strategies for enhancing cross-cultural comparability. First, we discuss a priori methods to ensure the comparability of data in cross-cultural surveys. In particular, we review findings on cross-cultural differences based on the psychology of survey response and provide suggestions on how to deal with these cultural differences in the survey design stage. Second, we discuss post hoc methods to ascertain data comparability and enable comparisons in the presence of threats to equivalence

    Kinetic performance comparison of fully and superficially porous particles with sizes ranging between 2.7μm and 5μm: Intrinsic evaluation and application to a pharmaceutical test compound

    No full text
    The reintroduction of superficially porous particles has resulted in a leap forward for the separation performance in liquid chromatography. The underlying reasons for the higher efficiency of columns packed with these particles are discussed. The performance of the newly introduced 5μm superficially porous particles is evaluated and compared to 2.7μm superficially porous and 3.5 and 5μm fully porous columns using typical test compounds (alkylphenones) and a relevant pharmaceutical compound (impurity of amoxicillin). The 5μm superficially porous particles provide a superior kinetic performance compared to both the 3.5 and 5μm fully porous particles over the entire relevant range of separation conditions. The performance of the superficially porous particles, however, appears to depend strongly on retention and analyte properties, emphasizing the importance of comparing different columns under realistic conditions (high enough k) and using the compound of interest. Keywords: Kinetic plot, Superficially porous particles, 5μm, Permeability, Amoxicillin impurity, Alkylphenone

    Kinetic optimisation of the reversed phase liquid chromatographic separation of proanthocyanidins on sub-2μm and superficially porous phases

    No full text
    Phenolic compounds, and proanthocyanidins in particular, are important natural molecules which are of significant importance due to their sensory and biological activities. The analysis of proanthocyanidins in natural products is very challenging due to their complex nature. In this study, the kinetic performance of a range of recently developed C18 columns, including sub-2 μm fully porous and 2.6 μm superficially porous particle-packed columns, was evaluated for improved proanthocyanidin analysis. The kinetic plot method was employed to compare the ultimate performance limits of each column in terms of efficiency and speed for different maximum pressures and temperatures using representative proanthocyanidins comprising a range of molecular weights and functionalities as test analytes. By combining plate height data with relevant parameters such as column permeability and mobile phase viscosity, plots of practically attainable efficiencies as a function of analysis time for specific experimental configurations were obtained and performance limits for all investigated supports could accurately be compared. Both fully- and superficially porous particles provided significant speed and/or efficiency gains compared to conventional 5 μm particle packed columns. Analyte properties, particle size and packing quality as well as analysis temperature were all found to have a significant influence on the performance of the presently investigated chromatographic supports. For smaller compounds, higher optimal linear velocities and better performance in the low-efficiency range were observed, while the lower diffusion coefficients of larger procyanidins resulted in lower optimal linear velocities and better performance in the high-efficiency regime. Faster analyses become possible at higher temperatures due to decreased eluent viscosity and faster mass transfer, which was especially beneficial for larger compounds and resulted in dramatic improvement in efficiency. A possible explanation of the abnormal behaviour of oligomeric procyanidins is presented. Our findings indicate that new column formats, when used under optimal conditions, significantly improve the speed and/or efficiency of reversed phase liquid chromatographic analyses of proanthocyanidins. © 2012 Elsevier B.V
    corecore