920 research outputs found

    Are ticks venomous animals?

    Get PDF
    [Introduction]: As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. [Results]: Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. [Conclusions]: Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary proteins, we consider that ticks should be referred to as venomous ectoparasites.JJV was sponsored by project CZ.1.07/2.3.00/30.0032, co-financed by the European Social Fund and the state budget of the Czech Republic. ACC was supported by a grant from the Ministère de l’Education Supérieure et de la Recherche of France.Peer Reviewe

    Complete genome sequence of Ehrlichia mineirensis, a novel organism closely related to Ehrlichia canis with a new host association

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.-- et al.We report here the complete genome sequencing of Ehrlichia mineirensis, an Ehrlichia organism that was isolated from the hemolymph of Rhipicephalus microplus¿engorged females. E. mineirensis is the best characterized Ehrlichia isolate from a novel cattle-related clade closely related to the monocytotropic pathogen E. canis.This research was supported by Spanish National Research Program grant BFU2011-23896 and by EU FP7 ANTIGONE project number 278976. R.T. and M.M. were partially funded by Spanish Ministerio de Ciencia e Innovacion grant IPT-2011-0735-010000. A.C.C. was supported by a grant from the Ministère de l’Education Supérieure et de la Recherche of France.Peer Reviewe

    Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides

    Get PDF
    Ixodes scapularis ticks harbor microbial communities including pathogenic and non-pathogenic microbes. Pathogen infection increases the expression of several tick gut proteins, which disturb the tick gut microbiota and impact bacterial biofilm formation. Anaplasma phagocytophilum induces ticks to express I. scapularis antifreeze glycoprotein (IAFGP), a protein with antimicrobial activity, while Borrelia burgdorferi induces the expression of PIXR. Here, we tested the resistance of I. scapularis microbiome to A. phagocytophilum infection, antimicrobial peptide IAFGP, and anti-tick immunity specific to PIXR. We demonstrate that A. phagocytophilum infection and IAFGP affect the taxonomic composition and taxa co-occurrence networks, but had limited impact on the functional traits of tick microbiome. In contrast, anti-tick immunity disturbed the taxonomic composition and the functional profile of tick microbiome, by increasing both the taxonomic and pathways diversity. Mechanistically, we show that anti-tick immunity increases the representation and importance of the polysaccharide biosynthesis pathways involved in biofilm formation, while these pathways are under-represented in the microbiome of ticks infected by A. phagocytophilum or exposed to IAFGP. These analyses revealed that tick microbiota is highly sensitive to anti-tick immunity, while it is less sensitive to pathogen infection and antimicrobial peptides. Results suggest that biofilm formation may be a defensive response of tick microbiome to anti-tick immunity

    Behind taxonomic variability: The functional redundancy in the tick microbiome

    Get PDF
    The taxonomic composition and diversity of tick midgut microbiota have been extensively studied in different species of the genera Rhipicephalus, Ixodes, Amblyomma, Haemaphysalis, Hyalomma, Dermacentor, Argas and Ornithodoros, while the functional significance of bacterial diversity has been proportionally less explored. In this study, we used previously published 16S amplicon sequence data sets from three Ixodes scapularis cohorts, two of uninfected nymphs, and one of larvae experimentally infected with Borrelia burgdorferi, to test the functional redundancy of the tick microbiome. We predicted the metabolic profiling of each sample using the state-of-the-art metagenomics tool PICRUSt2. The results showed that the microbiomes of all I. scapularis samples share only 80 taxa (24.6%, total 324), while out of the 342 metabolic pathways predicted, 82.7%, were shared by all the ticks. Borrelia-infected larvae lack 15.4% of pathways found in the microbiome of uninfected nymphs. Taxa contribution analysis showed that the functional microbiome of uninfected ticks was highly redundant, with, in some cases, up to 198 bacterial taxa contributing to a single pathway. However, Borrelia-infected larvae had a smaller redundancy with 6.7% of pathways provided by more than 100 genera, while 15.7–19.2% of pathways were provided by more than 100 genera in the two cohorts of uninfected ticks. In addition, we compared the functional profiles of three microbial communities from each data set, identified through a network-based approach, and we observed functional similarity between them. Based on the functional redundancy and functional similarity of the microbiome of ticks in different developmental stages and infection status, we concluded that the tick gut microbiota is a self-regulating community of very diverse bacteria contributing to a defined set of metabolic pathways and functions with yet unexplored relevance for tick fitness and/or bacterial community stability. We propose a change of focus in which the tick microbiome must be analyzed in all dimensions, highlighting their functional traits, instead of the conventional taxonomic profiling

    Cancer research meets tick vectors for infectious diseases

    Get PDF
    Comment.Peer Reviewe

    The glycoprotein TRP36 of Ehrlichia sp. UFMG-EV and related cattle pathogen Ehrlichia sp. UFMT-BV evolved from a highly variable clade of E. canis under adaptive diversifying selection

    Get PDF
    [Background]: A new species of Ehrlichia, phylogenetically distant from E. ruminantium, was found in 2010 infecting cattle in Canada. In 2012 and 2013, we reported the in vitro propagation, molecular and ultrastructural characterization of Ehrlichia sp. UFMG-EV (E. mineirensis), a new species of Ehrlichia isolated from the haemolymph of Brazilian Rhipicephalus (Boophilus) microplus ticks. A new organism, named Ehrlichia sp. UFMT-BV, closely related to Ehrlichia sp. UFMG-EV, was recently described in Brazil and after experimental infection it was shown to be pathogenic for cattle. This new emerging clade of cattle Ehrlichia pathogens is closely related to E. canis. The major immunogenic Tandem Repeat Protein (TRP36; also known as gp36) is extensively used to characterize the genetic diversity of E. canis. Homologs of TRP36 were found in both Ehrlichia sp. UFMG-EV and Ehrlichia sp. UFMT-BV. [Findings]: Herein, we characterized the evolution of this new Ehrlichia clade using TRP36 sequences. Our working hypothesis is that Ehrlichia sp. UFMG-EV and related microorganisms evolved from a highly variable E. canis clade. In support of our hypothesis we found that Ehrlichia sp. UFMG-EV and Ehrlichia sp. UFMT-BV TRP36 evolved from a highly divergent and variable clade within E. canis and this clade evolved under episodic diversifying selection with a high proportion of sites under positive selection. [Conclusion]: Our results suggest that Ehrlichia sp. UFMG-EV and Ehrlichia sp. UFMT-BV evolved from a variable clade within E. canis.This research was partially supported by the EU FP7 ANTIGONE project number 278976. JJV was sponsored by project CZ.1.07/2.3.00/30.0032, co-financed by the European Social Fund and the state budget of the Czech Republic. ACC was supported by a grant from the Ministère de l’Education Supérieure et de la Recherche of FrancePeer Reviewe

    Mechanical Properties of Three-layer Boards of Pine (Pinus radiata) and Pigue (Piptocoma discolor) Owned by the PISMADE S.A. Company

    Get PDF
    The present study proposes to determine the mechanical properties of three-layer boards of pine (Pinus radiata) and pigue (Piptocoma discolor) owned by the PISMADE S.A. Company. The tests were carried out under established technical procedures, with the use of international standards, at the Materials Resistance laboratory of the Faculty of Mechanics located in the Higher Polytechnic School of Chimborazo. 24 test pieces belonging to three-layer boards provided by the company were evaluated, each of them of different dimensions for bending and compression tests. It was possible to verify the different resistances that the boards of these species support; bending and compression values for both pine and pigue were obtained, appropriate for their use in the industry. The information generated deems this material rigid and appropriate for its efficient and durable use. Keywords: compression, flexion, mechanical properties, wood boards. Resumen El presente estudio propone determinar las propiedades mecánicas en tableros tricapa de pino (Pinus radiata) y pigue (Piptocoma discolor) propiedad de la empresa PISMADE S.A. Los ensayos se los realizó bajo procedimientos técnicos, con la utilización de normas internacionales, dentro del laboratorio de Resistencia de Materiales de la facultad de Mecánica ubicado en la Escuela Superior Politécnica de Chimborazo. Evaluándose 24 probetas pertenecientes a tableros alistonados tricapa, cada una de ellas de diferentes dimensiones para ensayos de flexión y compresión, proporcionados por la empresa. Se pudo comprobar las diferentes resistencias que soportan los tableros de estas especies, obteniendo valores de flexión y compresión tanto para pino y pigue apropiados para su utilización en la industria. La información generada considera a este material rígido y apropiado para su uso eficiente y duradero. Palabras clave: compresión, flexión, propiedades mecánicas, tableros de madera

    The good, the bad and the tick

    Get PDF
    How tick-borne pathogens (TBPs) could help us understand cancer? The diversity of pathogens transmitted by ticks is higher than that of any other known arthropod vector and includes protozoa (e.g., Babesia spp. and Theileria spp.), bacteria (e.g., intracellular Rickettsia spp. and extracellular Borrelia spp.), viruses (e.g., Tick-borne encephalitis (TBE) and Crimean-Congo hemorrhagic fever (CCHF) virus), helminths (e.g., Cercopithifilaria) and, although less known, fungi (e.g., Dermatophilus) (Otranto et al., 2013; Brites-Neto et al., 2015; de la Fuente et al., 2017). TBPs have complex life cycles that involve vertebrate hosts and the ticks. Intracellular TBP infection triggers cellular and molecular responses that change host cell physiology in fundamental ways. Within vertebrate host cells, the apicomplexan parasites Theileria parva and Theileria annulata activate molecular pathways that result in increased production of reactive oxygen species (ROS), cell immortalization, cancer and host death. In contrast, infection by the rickettsia Anaplasma phagocytophilum inhibits apoptosis, block the production of ROS and results in a self-limiting infection that rarely is lethal for the host. Theileria spp. and A. phagocytophilum modulates host cell response by inducing transcriptional reprogramming of their vertebrate host cells, leukocytes. Transcriptional reprogramming is induced by pathogen-encoded effector proteins that modify host epigenetic pathways that affect not only gene transcription but also protein levels

    Rural Constructions in the Professional Training of Students from a Principal Integrating Discipline Perspective

    Get PDF
    Context: The job insertion of students in the Degree of Education Construction in rural constructions, from the perspective of the professional teaching-learning process of the principal integrating discipline, favors their professional training. From this job context, students associate with constructive typologies that identify their cultural identity, history, the direct relation to nature’s agents, and the utilization of local materials that let them work with a prospering and sustainable vision for the conservation and protection of the ecosystem during the process of rural construction. Aim: To provide a rationale of rural constructions as a job context in the professional teaching-learning process through the principal integrating discipline, to students in the Degree of Education Construction. Methods: The essential methods used are analysis-synthesis, induction-deduction, and scientific observation, which provided evidence of insufficiencies in the job training of students in the Degree of Education in Construction in relation to rural constructions, from the perspective of the principal integrating discipline. Results: Labor qualities, and the traits of a Bachelor in Education in Construction, in relation to their performance in rural constructions were presented within the job context of the principal integrating discipline, with a prospering and sustainable vision

    Thermostable Keystone bacteria maintain the functional diversity of the Ixodes scapularis microbiome under heat stress

    Get PDF
    Variations in the composition and diversity of tick microbiome due to high temperatures may influence the hierarchy of community members as a response to environmental change. Modifications in the community structure are hypothesized to drive alterations in the presence and/or abundance of functional pathways in the bacterial metagenome. In this study, this hypothesis was tested by using published 16S rRNA datasets of Ixodes scapularis males incubated at different temperatures (i.e., 4, 20, 30, and 37 degrees C) in a laboratory setting. Changes in community structure and functional profiles in response to temperature shifts were measured using co-occurrence networks and metagenome inference. Results from laboratory-reared ticks were then compared with those of field-collected ticks. The results from laboratory-reared ticks showed that high temperature altered the structure of the microbial community and decreased the number of keystone taxa. Notably, four taxa were identified as keystone in all the temperatures, and the functional diversity of the tick microbiome was contained in the four thermostable keystone their associated bacterial taxa. Three of the thermostable keystone taxa were also found in free-living ticks collected in Massachusetts. Moreover, the comparison of functional profiles of laboratory-reared and field-collected ticks revealed the existence of an important set of metabolic pathways that were common among the different datasets. Similar to the laboratory-reared ticks, the keystone taxa identified in field-collected ticks alongside their consortia (co-occurring taxa) were sufficient to retain the majority of the metabolic pathways in the functional profile. These results suggest that keystone taxa are essential in the stability and the functional resiliency of the tick microbiome under heat stress
    • …
    corecore