196 research outputs found

    An analytical model for Loc/ID mappings caches

    Get PDF
    Concerns regarding the scalability of the interdomain routing have encouraged researchers to start elaborating a more robust Internet architecture. While consensus on the exact form of the solution is yet to be found, the need for a semantic decoupling of a node's location and identity is generally accepted as a promising way forward. However, this typically requires the use of caches that store temporal bindings between the two namespaces, to avoid hampering router packet forwarding speeds. In this article, we propose a methodology for an analytical analysis of cache performance that relies on the working-set theory. We first identify the conditions that network traffic must comply with for the theory to be applicable and then develop a model that predicts average cache miss rates relying on easily measurable traffic parameters. We validate the result by emulation, using real packet traces collected at the egress points of a campus and an academic network. To prove its versatility, we extend the model to consider cache polluting user traffic and observe that simple, low intensity attacks drastically reduce performance, whereby manufacturers should either overprovision router memory or implement more complex cache eviction policies.Peer ReviewedPostprint (author's final draft

    Decentralized trust in the inter-domain routing infrastructure

    Get PDF
    Inter-domain routing security is of critical importance to the Internet since it prevents unwanted traffic redirections. The current system is based on a Public Key Infrastructure (PKI), a centralized repository of digital certificates. However, the inherent centralization of such design creates tensions between its participants and hinders its deployment. In addition, some technical drawbacks of PKIs delay widespread adoption. In this paper we present IPchain, a blockchain to store the allocations and delegations of IP addresses. IPchain leverages blockchains' properties to decentralize trust among its participants, with the final goal of providing flexible trust models that adapt better to the ever-changing geopolitical landscape. Moreover, we argue that Proof of Stake is a suitable consensus algorithm for IPchain due to the unique incentive structure of this use-case, and that blockchains offer relevant technical advantages when compared to existing systems, such as simplified management. In order to show its feasibility and suitability, we have implemented and evaluated IPchain's performance and scalability storing around 350k IP prefixes in a 2.5 GB chain.Peer ReviewedPostprint (published version

    Global state, local decisions: Decentralized NFV for ISPs via enhanced SDN

    Get PDF
    The network functions virtualization paradigm is rapidly gaining interest among Internet service providers. However, the transition to this paradigm on ISP networks comes with a unique set of challenges: legacy equipment already in place, heterogeneous traffic from multiple clients, and very large scalability requirements. In this article we thoroughly analyze such challenges and discuss NFV design guidelines that address them efficiently. Particularly, we show that a decentralization of NFV control while maintaining global state improves scalability, offers better per-flow decisions and simplifies the implementation of virtual network functions. Building on top of such principles, we propose a partially decentralized NFV architecture enabled via an enhanced software-defined networking infrastructure. We also perform a qualitative analysis of the architecture to identify advantages and challenges. Finally, we determine the bottleneck component, based on the qualitative analysis, which we implement and benchmark in order to assess the feasibility of the architecture.Peer ReviewedPostprint (author's final draft

    WiSync: an architecture for fast synchronization through on-chip wireless communication

    Get PDF
    In shared-memory multiprocessing, fine-grain synchronization is challenging because it requires frequent communication. As technology scaling delivers larger manycore chips, such pattern is expected to remain costly to support.; In this paper, we propose to address this challenge by using on-chip wireless communication. Each core has a transceiver and an antenna to communicate with all the other cores. This environment supports very low latency global communication. Our architecture, called WiSync, uses a per-core Broadcast Memory (BM). When a core writes to its BM, all the other 100+ BMs get updated in less than 10 processor cycles. We also use a second wireless channel with cheaper transfers to execute barriers efficiently. WiSync supports multiprogramming, virtual memory, and context switching. Our evaluation with simulations of 128-threaded kernels and 64-threaded applications shows that WiSync speeds-up synchronization substantially. Compared to using advanced conventional synchronization, WiSync attains an average speedup of nearly one order of magnitude for the kernels, and 1.12 for PARSEC and SPLASH-2.Peer ReviewedPostprint (author's final draft

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Pulse interspersing in static multipath chip environments for Impulse Radio communications

    Get PDF
    Communications are becoming the bottleneck in the performance of Chip Multiprocessor (CMP). To address this issue, the use of wireless communications within a chip has been proposed, since they offer a low latency among nodes and high reconfigurability. The chip scenario has the particularity that is static, and the multipath can be known a priori. Within this context, we propose in this paper a simple yet very efficient modulation technique, based on Impulse Radio-On–Off-Keying (IR-OOK), which significantly optimizes the performance in Wireless Network-on-Chip (WNoC) as well as off-chip scenarios. This technique is based on interspersing information pulses among the reflected pulses in order to reduce the time between pulses, thus increasing the data rate. We prove that the final data rate can be considerably increased without increasing the hardware complexity of the transceiver.Peer ReviewedPostprint (published version

    OrthoNoC: a broadcast-oriented dual-plane wireless network-on-chip architecture

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksOn-chip communication remains as a key research issue at the gates of the manycore era. In response to this, novel interconnect technologies have opened the door to new Network-on-Chip (NoC) solutions towards greater scalability and architectural flexibility. Particularly, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. This work presents ORTHONOC, a wired-wireless architecture that differs from existing proposals in that both network planes are decoupled and driven by traffic steering policies enforced at the network interfaces. With these and other design decisions, ORTHONOC seeks to emphasize the ordered broadcast advantage offered by the wireless technology. The performance and cost of ORTHONOC are first explored using synthetic traffic, showing substantial improvements with respect to other wired-wireless designs with a similar number of antennas. Then, the applicability of ORTHONOC in the multiprocessor scenario is demonstrated through the evaluation of a simple architecture that implements fast synchronization via ordered broadcast transmissions. Simulations reveal significant execution time speedups and communication energy savings for 64-threaded benchmarks, proving that the value of ORTHONOC goes beyond simply improving the performance of the on-chip interconnect.Peer ReviewedPostprint (author's final draft

    Medium access control in wireless network-on-chip: a context analysis

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wireless on-chip communication is a promising candidate to address the performance and efficiency issues that arise when scaling current NoC techniques to manycore processors. A WNoC can serve global and broadcast traffic with ultra-low latency even in thousand-core chips, thus acting as a natural complement to conventional and throughput-oriented wireline NoCs. However, the development of MAC strategies needed to efficiently share the wireless medium among the increasing number of cores remains a considerable challenge given the singularities of the environment and the novelty of the research area. In this position article, we present a context analysis describing the physical constraints, performance objectives, and traffic characteristics of the on-chip communication paradigm. We summarize the main differences with respect to traditional wireless scenarios, and then discuss their implications on the design of MAC protocols for manycore WNoC, with the ultimate goal of kickstarting this arguably unexplored research area.Peer ReviewedPostprint (author's final draft

    Decentralised Internet infrastructure: Securing inter-domain routing (DEMO)

    Get PDF
    The Border Gateway Protocol (BGP) is the inter-domain routing protocol that glues the Internet. BGP does not incorporate security and instead, it relies on careful configuration and manual filtering to offer some protection. As a consequence, the current inter-domain routing infrastructure is partially vulnerable to prefix and path hijacks as well as in misconfigurations that results in route leaks. There are many instances of these vulnerabilities being exploited by malicious actors on the Internet, resulting in disruption of services. To address this issue the IETF has designed RPKI, a centralised trust architecture that relies on Public Key Infrastructure. RPKI has slow adoption and its centralised nature is problematic: network administrators are required to trust CAs and do not have the ultimate control of their own critical Internet resources (e.g,. IP blocks, AS Numbers). In this context, we have built the Decentralised Internet Infrastructure (DII), a distributed ledger to securely store inter-domain routing information. The main advantages of DII are (i) it offers flexible trust models where the Internet community can define the rules of a consensus algorithm that properly reflects the power balance of its members and, (ii) offers protection against vulnerabilities (path hijack and route leaks) that goes well beyond what RPKI offers. We have deployed the prototype on the wild in a worldwide testbed including 7 ASes, we will use the testbed to demonstrate in a realistic scenario how allocation and delegation of Internet resources in DII work, and how this protects ASes against artificially produced path and prefix hijack as well as a route leak.This work was partially supported by the Spanish MINECO under contract TEC2017-90034-C2-1-R (ALLIANCE) and the Catalan Institution for Research and Advanced Studies (ICREA).Peer ReviewedPostprint (author's final draft
    corecore