56 research outputs found

    Statistical methods for analysis of genetic data

    Get PDF
    Genetic studies of gene expression typically aim to identify a set of genes that are associated with a disease, such as a specific cancer type. A single microarray or next generation sequencing experiment can simultaneously measure gene expression for tens of thousands of genes. When analyzing high-dimensional gene expression data, clusters in the data often represent biological quantities of interest, such as tumor subtypes. In this dissertation, we describe Standardized WithIn Class Sum of Squares (SWISS), a statistical tool that quantifies how well a high-dimensional data set clusters into predefined classes. We show SWISS to be very useful in genetic studies for comparing two different processing methods on the same data set by indicating which processing method yields better relative separation between classes. Additionally, we investigate the asymptotic behavior of SWISS in the High Dimension Low Sample Size setting, where the sample size is fixed and the dimension grows. Next generation sequencing is rapidly becoming the technology of choice for genomic studies. This technology allows millions of fragments of DNA to be simultaneously sequenced. Unfortunately, this technology is not error-free and occasionally will call an incorrect base. When a base is sequenced, a quality score is also provided which corresponds to the probability that the base called is incorrect. In the second half of this dissertation, we show that these quality scores do not accurately represent the probability of a sequencing error. We describe a method that recalibrates these quality scores and show that these recalibrated scores are more accurate and better at discriminating sequencing errors from non-errors

    Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer

    Get PDF
    BACKGROUND: Long intergenic non-coding RNAs (lncRNAs) represent an emerging and under-studied class of transcripts that play a significant role in human cancers. Due to the tissue- and cancer-specific expression patterns observed for many lncRNAs it is believed that they could serve as ideal diagnostic biomarkers. However, until each tumor type is examined more closely, many of these lncRNAs will remain elusive. RESULTS: Here we characterize the lncRNA landscape in lung cancer using publicly available transcriptome sequencing data from a cohort of 567 adenocarcinoma and squamous cell carcinoma tumors. Through this compendium we identify over 3,000 unannotated intergenic transcripts representing novel lncRNAs. Through comparison of both adenocarcinoma and squamous cell carcinomas with matched controls we discover 111 differentially expressed lncRNAs, which we term lung cancer-associated lncRNAs (LCALs). A pan-cancer analysis of 324 additional tumor and adjacent normal pairs enable us to identify a subset of lncRNAs that display enriched expression specific to lung cancer as well as a subset that appear to be broadly deregulated across human cancers. Integration of exome sequencing data reveals that expression levels of many LCALs have significant associations with the mutational status of key oncogenes in lung cancer. Functional validation, using both knockdown and overexpression, shows that the most differentially expressed lncRNA, LCAL1, plays a role in cellular proliferation. CONCLUSIONS: Our systematic characterization of publicly available transcriptome data provides the foundation for future efforts to understand the role of LCALs, develop novel biomarkers, and improve knowledge of lung tumor biology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0429-8) contains supplementary material, which is available to authorized users

    SigFuge: Single gene clustering of RNA-seq reveals differential isoform usage among cancer samples

    Get PDF
    High-throughput sequencing technologies, including RNA-seq, have made it possible to move beyond gene expression analysis to study transcriptional events including alternative splicing and gene fusions. Furthermore, recent studies in cancer have suggested the importance of identifying transcriptionally altered loci as biomarkers for improved prognosis and therapy. While many statistical methods have been proposed for identifying novel transcriptional events with RNA-seq, nearly all rely on contrasting known classes of samples, such as tumor and normal. Few tools exist for the unsupervised discovery of such events without class labels. In this paper, we present SigFuge for identifying genomic loci exhibiting differential transcription patterns across many RNA-seq samples. SigFuge combines clustering with hypothesis testing to identify genes exhibiting alternative splicing, or differences in isoform expression. We apply SigFuge to RNA-seq cohorts of 177 lung and 279 head and neck squamous cell carcinoma samples from the Cancer Genome Atlas, and identify several cases of differential isoform usage including CDKN2A, a tumor suppressor gene known to be inactivated in a majority of lung squamous cell tumors. By not restricting attention to known sample stratifications, SigFuge offers a novel approach to unsupervised screening of genetic loci across RNA-seq cohorts. SigFuge is available as an R package through Bioconductor

    BlackOPs: Increasing confidence in variant detection through mappability filtering

    Get PDF
    Identifying variants using high-throughput sequen-cing data is currently a challenge because true biological variants can be indistinguishable from technical artifacts. One source of technical arti-fact results from incorrectly aligning experimen-tally observed sequences to their true genomic origin (‘mismapping’) and inferring differences in mismapped sequences to be true variants. We de-veloped BlackOPs, an open-source tool that simu-lates experimental RNA-seq and DNA whole exome sequences derived from the reference genome, aligns these sequences by custom parameters, detects variants and outputs a blacklist of positions and alleles caused by mismapping. Blacklist

    Integrated RNA and DNA sequencing improves mutation detection in low purity tumors

    Get PDF
    Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors

    SWISS MADE: Standardized WithIn Class Sum of Squares to Evaluate Methodologies and Dataset Elements

    Get PDF
    Contemporary high dimensional biological assays, such as mRNA expression microarrays, regularly involve multiple data processing steps, such as experimental processing, computational processing, sample selection, or feature selection (i.e. gene selection), prior to deriving any biological conclusions. These steps can dramatically change the interpretation of an experiment. Evaluation of processing steps has received limited attention in the literature. It is not straightforward to evaluate different processing methods and investigators are often unsure of the best method. We present a simple statistical tool, Standardized WithIn class Sum of Squares (SWISS), that allows investigators to compare alternate data processing methods, such as different experimental methods, normalizations, or technologies, on a dataset in terms of how well they cluster a priori biological classes. SWISS uses Euclidean distance to determine which method does a better job of clustering the data elements based on a priori classifications. We apply SWISS to three different gene expression applications. The first application uses four different datasets to compare different experimental methods, normalizations, and gene sets. The second application, using data from the MicroArray Quality Control (MAQC) project, compares different microarray platforms. The third application compares different technologies: a single Agilent two-color microarray versus one lane of RNA-Seq. These applications give an indication of the variety of problems that SWISS can be helpful in solving. The SWISS analysis of one-color versus two-color microarrays provides investigators who use two-color arrays the opportunity to review their results in light of a single-channel analysis, with all of the associated benefits offered by this design. Analysis of the MACQ data shows differential intersite reproducibility by array platform. SWISS also shows that one lane of RNA-Seq clusters data by biological phenotypes as well as a single Agilent two-color microarray

    ReQON: a Bioconductor package for recalibrating quality scores from next-generation sequencing data

    Get PDF
    AbstractBackgroundNext-generation sequencing technologies have become important tools for genome-wide studies. However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores are used in downstream analyses, these inaccuracies can have a significant impact on the results.ResultsHere we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they more closely correspond to the probability of a sequencing error, and do a better job of discriminating between sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy.ConclusionReQON is an open source software package, written in R and available through Bioconductor, for recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic plots showing the effectiveness of the recalibration

    ReQON: a Bioconductor package for recalibrating quality scores from next-generation sequencing data

    Get PDF
    Background Next-generation sequencing technologies have become important tools for genome-wide studies. However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores are used in downstream analyses, these inaccuracies can have a significant impact on the results. Results Here we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they more closely correspond to the probability of a sequencing error, and do a better job of discriminating between sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy. Conclusion ReQON is an open source software package, written in R and available through Bioconductor, for recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic plots showing the effectiveness of the recalibration

    BlackOPs: increasing confidence in variant detection through mappability filtering

    Get PDF
    Identifying variants using high-throughput sequencing data is currently a challenge because true biological variants can be indistinguishable from technical artifacts. One source of technical artifact results from incorrectly aligning experimentally observed sequences to their true genomic origin (‘mismapping’) and inferring differences in mismapped sequences to be true variants. We developed BlackOPs, an open-source tool that simulates experimental RNA-seq and DNA whole exome sequences derived from the reference genome, aligns these sequences by custom parameters, detects variants and outputs a blacklist of positions and alleles caused by mismapping. Blacklists contain thousands of artifact variants that are indistinguishable from true variants and, for a given sample, are expected to be almost completely false positives. We show that these blacklist positions are specific to the alignment algorithm and read length used, and BlackOPs allows users to generate a blacklist specific to their experimental setup. We queried the dbSNP and COSMIC variant databases and found numerous variants indistinguishable from mapping errors. We demonstrate how filtering against blacklist positions reduces the number of potential false variants using an RNA-seq glioblastoma cell line data set. In summary, accounting for mapping-caused variants tuned to experimental setups reduces false positives and, therefore, improves genome characterization by high-throughput sequencing

    The clonal evolution of metastatic colorectal cancer

    Get PDF
    Tumor heterogeneity and evolution drive treatment resistance in metastatic colorectal cancer (mCRC). Patient-derived xenografts (PDXs) can model mCRC biology; however, their ability to accurately mimic human tumor heterogeneity is unclear. Current genomic studies in mCRC have limited scope and lack matched PDXs. Therefore, the landscape of tumor heterogeneity and its impact on the evolution of metastasis and PDXs remain undefined. We performed whole-genome, deep exome, and targeted validation sequencing of multiple primary regions, matched distant metastases, and PDXs from 11 patients with mCRC. We observed intricate clonal heterogeneity and evolution affecting metastasis dissemination and PDX clonal selection. Metastasis formation followed both monoclonal and polyclonal seeding models. In four cases, metastasis-seeding clones were not identified in any primary region, consistent with a metastasis-seeding-metastasis model. PDXs underrepresented the subclonal heterogeneity of parental tumors. These suggest that single sample tumor sequencing and current PDX models may be insufficient to guide precision medicine
    corecore