17 research outputs found

    Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    Get PDF
    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold

    Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy

    Get PDF
    Background: Prolonged febrile seizures constitute an initial precipitating injury (IPI) commonly associated with refractory mesial temporal lobe epilepsy (RMTLE). in order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS) or without (NFS) febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations.Methodology/Principal Findings: DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs). Co-expression network analysis showed that: i) CA3 transcriptomic profiles differ according to the IPI; ii) FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi.Conclusions/Significance: CA3 transcriptional signatures and dentate gyrus morphology fairly correlate with IPI in RMTLE, indicating that FS-RMTLE represents a distinct phenotype. These findings may shed light on the molecular mechanisms underlying refractory epilepsy phenotypes and contribute to the discovery of novel specific drug targets for therapeutic interventions

    Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia.

    Get PDF
    Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress

    Dual origins of functionally distinct O-LM interneurons revealed by differential 5-HT3AR expression

    No full text
    Forebrain circuits rely upon a relatively small but remarkably diverse population of GABAergic interneurons to bind and entrain large principal cell assemblies for network synchronization and rhythmogenesis. Despite the high degree of heterogeneity across cortical interneurons, members of a given subtype typically exhibit homogeneous developmental origins, neuromodulatory response profiles, morphological characteristics, neurochemical signatures, and electrical features. Here we report a surprising divergence amongst hippocampal oriens-lacunosum moleculare (O-LM) projecting interneurons that have hitherto been considered a homogeneous cell population. Combined immunocytochemical, anatomical, and electrophysiological interrogation of Htr3a-GFP and Nkx2-1-cre:RCE mice revealed that O-LM cells parse into caudal ganglionic eminence-derived 5-HT(3A)R-expressing, and medial ganglionic eminence- derived 5-HT(3A)R-lacking subpopulations. These two cohorts differentially participate in network oscillations with 5-HT(3A)R-containing O-LM cell recruitment dictated by serotonergic tone. Thus, members of a seemingly uniform interneuron population can exhibit unique circuit functions and neuromodulatory properties dictated by disparate developmental origins
    corecore