18,771 research outputs found
On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer
A self-consistent calculation of the density of states and the spectral
density function is performed in a two-dimensional spin-polarized hole system
based on a multiple-scattering approximation. Using parameters corresponding to
GaMnAs thin layers, a wide range of Mn concentrations and hole densities have
been explored to understand the nature, localized or extended, of the
spin-polarized holes at the Fermi level for several values of the average
magnetization of the Mn ystem. We show that, for a certain interval of Mn and
hole densities, an increase on the magnetic order of the Mn ions come together
with a change of the nature of the states at the Fermi level. This fact
provides a delocalization of spin-polarized extended states anti-aligned to the
average Mn magnetization, and a higher spin-polarization of the hole gas. These
results are consistent with the occurrence of ferromagnetism with relatively
high transition temperatures observed in some thin film samples and
multilayered structures of this material.Comment: 3 page
Magnetic ordering in GaAlAs:Mn double well structure
The magnetic order in the diluted magnetic semiconductor barrier of double
AlAs/GaAs: Mn quantum well structures is investigated by Monte Carlo
simulations. A confinement adapted RKKY mechanism is implemented for indirect
exchange between Mn ions mediated by holes. It is shown that, depending on the
barrier width and the hole concentration a ferromagnetic or a spin-glass order
can be established.Comment: 3 figure
A dynamical point of view of Quantum Information: entropy and pressure
Quantum Information is a new area of research which has been growing rapidly
since last decade. This topic is very close to potential applications to the so
called Quantum Computer. In our point of view it makes sense to develop a more
"dynamical point of view" of this theory. We want to consider the concepts of
entropy and pressure for "stationary systems" acting on density matrices which
generalize the usual ones in Ergodic Theory (in the sense of the Thermodynamic
Formalism of R. Bowen, Y. Sinai and D. Ruelle). We consider the operator
acting on density matrices over a finite
-dimensional complex Hilbert space where and , are
operators in this Hilbert space. is not a linear operator. In
some sense this operator is a version of an Iterated Function System (IFS).
Namely, the , , play the role of the
inverse branches (acting on the configuration space of density matrices )
and the play the role of the weights one can consider on the IFS. We
suppose that for all we have that . A
family determines a Quantum Iterated Function System
(QIFS) , $\mathcal{F}_W=\{\mathcal{M}_N,F_i,W_i\}_{i=1,...,
k}.
Wang-Landau sampling in three-dimensional polymers
Monte Carlo simulations using Wang-Landau sampling are performed to study
three-dimensional chains of homopolymers on a lattice. We confirm the accuracy
of the method by calculating the thermodynamic properties of this system. Our
results are in good agreement with those obtained using Metropolis importance
sampling. This algorithm enables one to accurately simulate the usually hardly
accessible low-temperature regions since it determines the density of states in
a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic
A dynamical point of view of Quantum Information: Wigner measures
We analyze a known version of the discrete Wigner function and some
connections with Quantum Iterated Funcion Systems. This paper is a follow up of
"A dynamical point of view of Quantum Information: entropy and pressure" by the
same authors
Spin-polarized transport in ferromagnetic multilayered semiconductor nanostructures
The occurrence of inhomogeneous spin-density distribution in multilayered
ferromagnetic diluted magnetic semiconductor nanostructures leads to strong
dependence of the spin-polarized transport properties on these systems. The
spin-dependent mobility, conductivity and resistivity in
(Ga,Mn)As/GaAs,(Ga,Mn)N/GaN, and (Si,Mn)/Si multilayers are calculated as a
function of temperature, scaled by the average magnetization of the diluted
magnetic semiconductor layers. An increase of the resistivity near the
transition temperature is obtained. We observed that the spin-polarized
transport properties changes strongly among the three materials.Comment: 3 pages, 4 figure
Is CDM an effective CCDM cosmology?
We show that a cosmology driven by gravitationally induced particle
production of all non-relativistic species existing in the present Universe
mimics exactly the observed flat accelerating CDM cosmology with just
one dynamical free parameter. This kind of scenario includes the creation cold
dark matter (CCDM) model [Lima, Jesus & Oliveira, JCAP 011(2010)027] as a
particular case and also provides a natural reduction of the dark sector since
the vacuum component is not needed to accelerate the Universe. The new cosmic
scenario is equivalent to CDM both at the background and perturbative
levels and the associated creation process is also in agreement with the
universality of the gravitational interaction and equivalence principle.
Implicitly, it also suggests that the present day astronomical observations
cannot be considered the ultimate proof of cosmic vacuum effects in the evolved
Universe because CDM may be only an effective cosmology.Comment: 6 pages, 2 figures, changes in the abstract, introduction, new
references and typo correction
Impact of micro-telluric lines on precise radial velocities and its correction
Context: In the near future, new instruments such as ESPRESSO will arrive,
allowing us to reach a precision in radial-velocity measurements on the order
of 10 cm/s. At this level of precision, several noise sources that until now
have been outweighed by photon noise will start to contribute significantly to
the error budget. The telluric lines that are not neglected by the masks for
the radial velocity computation, here called micro-telluric lines, are one such
noise source. Aims: In this work we investigate the impact of micro-telluric
lines in the radial velocities calculations. We also investigate how to correct
the effect of these atmospheric lines on radial velocities. Methods: The work
presented here follows two parallel lines. First, we calculated the impact of
the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum
by synthetic atmospheric spectra and evaluated the effect created by the
presence of the telluric lines. Then, we divided HARPS spectra by synthetic
atmospheric spectra to correct for its presence on real data and calculated the
radial velocity on the corrected spectra. When doing so, one considers two
atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS.
Results: We find that the micro-telluric lines can induce an impact on the
radial velocities calculation that can already be close to the current
precision achieved with HARPS, and so its effect should not be neglected,
especially for future instruments such as ESPRESSO. Moreover, we find that the
micro-telluric lines' impact depends on factors, such as the radial velocity of
the star, airmass, relative humidity, and the barycentric Earth radial velocity
projected along the line of sight at the time of the observation.Comment: Accepted in A&
- âŠ