216 research outputs found

    Rotational Effects associated with ground motion during the Mw 6.3 2009 L’Aquila (Central Italy) Earthquake

    Get PDF
    The Mw 6.3 2009 L’Aquila (Central Italy) earthquake produced more than one hundred rotational effects on chimneys, pillars, capitals and gravestones. In this paper we focus on the 37 objects that can be more reliably considered as representative of pure rotational ground motion, and find a relation between the distribution of the observed rotations, the epicentral distance, the macroseismic intensities and the directivity effects that characterize the L’Aquila event. We also find sound relationships between the type of observed rotations and the geophysical, geotechnical and geomorphological characteristics of the site of observation. In downtown L’Aquila we find 1) a remarkable convergence between distribution of the rotations and of the damage; 2) 100% of the rotations occurred at sites characterized by high factors of amplification and poor geological setting; 3) the ground rotations are not strongly dependent on topographic effects. Finally, from quantitative analyses of GPS data we find that the effect of the seismic arrival on an individual vertical object retrieved rotated is an overall rotation with a substantially unpredictable directio

    Study of semi-synthetic plastic objects of historic interest using non-invasive total reflectance FT-IR

    Get PDF
    A significant proportion of modern and contemporary artifacts and objects of historical interest, are composed of materials in the form of synthetic, semi-synthetic, and natural polymers. Each class of polymer and corresponding composite plastics are subject to different degradation processes. This means that conservators and curators of 20th century collections are faced with varied, nontrivial preservation issues. An unresolved problem is the identification of early plastics based on semi-synthetic polymers such as cellulose nitrate, cellulose acetate, and casein formaldehyde, which were often used to imitate the more valuable natural materials such as ivory, tortoiseshell, ebony, and bone. This exemplifies the need for non-invasive methods specifically tailored for identification of plastic materials in collections, so as to provide conservators with a means of materials classification to support preventive conservation strategies and interventive treatments. The present work is aimed at evaluating the effectiveness of non-invasive Total Reflectance (TR) FT-IR spectroscopy, coupled with a custom reference spectral TR FT-IR library, for the identification of materials comprising a series of unknown objects. A set of ten heritage objects made from early semi-synthetic materials was used as a training test set to validate the proposed methodological approach. The FT-IR data acquired on the test objects were pre-processed and finally classified using commercial software tools used for the automatic classification of spectra in FT-IR spectroscopy. The procedure was successfully applied to several cases, although residual uncertainties remained in a few examples. The results obtained are critically analyzed and discussed in the perspective of proposing a robust method for in-field prescreening of the chemical composition of plastic artistic and historical objects

    A Deep Learning Approach to Ancient Egyptian Hieroglyphs Classification

    Get PDF
    Nowadays, advances in Artificial Intelligence (AI), especially in machine and deep learning, present new opportunities to build tools that support the work of specialists in areas apparently far from the information technology field. One example of such areas is that of ancient Egyptian hieroglyphic writing. In this study, we explore the ability of different convolutional neural networks (CNNs) to classify pictures of ancient Egyptian hieroglyphs coming from two different datasets of images. Three well-known CNN architectures (ResNet-50, Inception-v3 and Xception) were taken into consideration and trained on the available images. The paradigm of transfer learning was tested as well. In addition, modifying the architecture of one of the previous networks, we developed a specifically dedicated CNN, named Glyphnet, tailoring its complexity to our classification task. Performance comparison tests were carried out and Glyphnet showed the best performances with respect to the other CNNs. In conclusion, this work shows how the ancient Egyptian hieroglyphs identification task can be supported by the deep learning paradigm, laying the foundation for information tools supporting automatic documents recognition, classification and, most importantly, the language translation task

    Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon

    Get PDF
    In a study of multispectral and hyperspectral reflectance imaging, a Round Robin Test assessed the performance of different systems for the spectral digitisation of artworks. A Russian icon, mass-produced in Moscow in 1899, was digitised by ten institutions around Europe. The image quality was assessed by observers, and the reflectance spectra at selected points were reconstructed to characterise the icon’s colourants and to obtain a quantitative estimate of accuracy. The differing spatial resolutions of the systems affected their ability to resolve fine details in the printed pattern. There was a surprisingly wide variation in the quality of imagery, caused by unwanted reflections from both glossy painted and metallic gold areas of the icon’s surface. Specular reflection also degraded the accuracy of the reconstructed reflectance spectrum in some places, indicating the importance of control over the illumination geometry. Some devices that gave excellent results for matte colour charts proved to have poor performance for this demanding test object. There is a need for adoption of standards for digitising cultural heritage objects to achieve greater consistency of system performance and image quality.This article arose out of a Short-Term Scientific Mission (STSM) conducted by Tatiana Vitorino when visiting University College London during a 2-week period in late October 2015. The research was carried out under the auspices of the European COST Action TD1201 Colour and Space in Cultural Heritage (COSCH). The project website is at http://www.cosch.info. Under the COST rules, TV received funding for travel and accommodation expenses, and all coauthors were able to claim travel expenses to attend the subsequent COSCH project meeting. No other funding was received from COSCH for labour or equipment and all work was done on a voluntary pro bono basis.info:eu-repo/semantics/publishedVersio

    Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma

    Get PDF
    The siRNA-mediated inhibition of nuclear factor E2-related factor 2 (Nrf2) can be an attractive approach to overcome chemoresistance in various malignant tumors, including melanoma. This work aims at designing a new type of chitosan-shelled nanobubble for the delivery of siRNA against Nrf2 in combination with an ultrasound. A new preparation method based on a water–oil–water (W/O/W) double-emulsion was purposely developed for siRNA encapsulation in aqueous droplets within a nanobubble core. Stable, very small NB formulations were obtained, with sizes of about 100 nm and a positive surface charge. siRNA was efficiently loaded in NBs, reaching an encapsulation efficiency of about 90%. siNrf2-NBs downregulated the target gene in M14 cells, sensitizing the resistant melanoma cells to the cisplatin treatment. The combination with US favored NB cell uptake and transfection efficiency. Based on the results, nanobubbles have shown to be a promising US responsive tool for siRNA delivery, able to overcome chemoresistance in melanoma cancer cells

    A tunable nanoplatform of nanogold functionalised with Angiogenin peptides for anti-angiogenic therapy of brain tumours

    Get PDF
    Angiogenin (ANG), an endogenous protein that plays a key role in cell growth and survival, has been scrutinised here as promising nanomedicine tool for the modulation of pro-/anti-angiogenic processes in brain cancer therapy. Specifically, peptide fragments from the putative cell membrane binding domain (residues 60-68) of the protein were used in this study to obtain peptide-functionalised spherical gold nanoparticles (AuNPs) of about 10 nm and 30 nm in optical and hydrodynamic size, respectively. Different hybrid biointerfaces were fabricated by peptide physical adsorption (Ang60-68) or chemisorption (the cysteine analogous Ang60-68Cys) at the metal nanoparticle surface, and cellular assays were performed in the comparison with ANG-functionalised AuNPs. Cellular treatments were performed both in basal and in copper-supplemented cell culture medium, to scrutinise the synergic effect of the metal, which is another known angiogenic factor. Two brain cell lines were investigated in parallel, namely tumour glioblastoma (A172) and neuron-like differentiated neuroblastoma (d-SH-SY5Y). Results on cell viability/proliferation, cytoskeleton actin, angiogenin translocation and vascular endothelial growth factor (VEGF) release pointed to the promising potentialities of the developed systems as anti-angiogenic tunable nanoplaftforms in cancer cells treatment

    Graphene Oxide Nanosheets Tailored With Aromatic Dipeptide Nanoassemblies for a Tuneable Interaction With Cell Membranes

    Get PDF
    Engineered graphene-based derivatives are attractive and promising candidates for nanomedicine applications because of their versatility as 2D nanomaterials. However, the safe application of these materials needs to solve the still unanswered issue of graphene nanotoxicity. In this work, we investigated the self-assembly of dityrosine peptides driven by graphene oxide (GO) and/or copper ions in the comparison with the more hydrophobic diphenylalanine dipeptide. To scrutinize the peptide aggregation process, in the absence or presence of GO and/or Cu2+, we used atomic force microscopy, circular dichroism, UV–visible, fluorescence and electron paramagnetic resonance spectroscopies. The perturbative effect by the hybrid nanomaterials made of peptide-decorated GO nanosheets on model cell membranes of supported lipid bilayers was investigated. In particular, quartz crystal microbalance with dissipation monitoring and fluorescence recovery after photobleaching techniques were used to track the changes in the viscoelastic properties and fluidity of the cell membrane, respectively. Also, cellular experiments with two model tumour cell lines at a short time of incubation, evidenced the high potential of this approach to set up versatile nanoplatforms for nanomedicine and theranostic applications
    • …
    corecore