385 research outputs found

    Validating module network learning algorithms using simulated data

    Get PDF
    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators.Comment: 13 pages, 6 figures + 2 pages, 2 figures supplementary informatio

    Estimation of Isolation Times of the Island Species in the Drosophila simulans Complex from Multilocus DNA Sequence Data

    Get PDF
    Background: The Drosophila simulans species complex continues to serve as an important model system for the study of new species formation. The complex is comprised of the cosmopolitan species, D. simulans, and two island endemics, D. mauritiana and D. sechellia. A substantial amount of effort has gone into reconstructing the natural history of the complex, in part to infer the context in which functional divergence among the species has arisen. In this regard, a key parameter to be estimated is the initial isolation time (t) of each island species. Loci in regions of low recombination have lower divergence within the complex than do other loci, yet divergence from D. melanogaster is similar for both classes. This might reflect gene flow of the lowrecombination loci subsequent to initial isolation, but it might also reflect differential effects of changing population size on the two recombination classes of loci when the low-recombination loci are subject to genetic hitchhiking or pseudohitchhiking Methodology/Principal Findings: New DNA sequence variation data for 17 loci corroborate the prior observation from 13 loci that DNA sequence divergence is reduced in genes of low recombination. Two models are presented to estimate t and other relevant parameters (substitution rate correction factors in lineages leading to the island species and, in the case of the 4-parameter model, the ratio of ancestral to extant effective population size) from the multilocus DNA sequence data. Conclusions/Significance: In general, it appears that both island species were isolated at about the same time, here estimated at,250,000 years ago. It also appears that the difference in divergence patterns of genes in regions of low an

    A global view of drug-therapy interactions

    Get PDF
    Network science is already making an impact on the study of complex systems and offers a promising variety of tools to understand their formation and evolution (1-4) in many disparate fields from large communication networks (5,6), transportation infrastructures (7) and social communities (8,9) to biological systems (1,10,11). Even though new highthroughput technologies have rapidly been generating large amounts of genomic data, drug design has not followed the same development, and it is still complicated and expensive to develop new single-target drugs. Nevertheless, recent approaches suggest that multi-target drug design combined with a network-dependent approach and large-scale systems-oriented strategies (12-14) create a promising framework to combat complex multigenetic disorders like cancer or diabetes. Here, we investigate the human network corresponding to the interactions between all US approved drugs and human therapies, defined by known drug-therapy relationships. Our results show that the key paths in this network are shorter than three steps, indicating that distant therapies are separated by a surprisingly low number of chemical compounds. We also identify a sub-network composed by drugs with high centrality measures (15), which represent the structural back-bone of the drug-therapy system and act as hubs routing information between distant parts of the network. These findings provide for the first time a global map of the largescale organization of all known drugs and associated therapies, bringing new insights on possible strategies for future drug development. Special attention should be given to drugs which combine the two properties of (a) having a high centrality value and (b) acting on multiple targets.Comment: 16 pages, 4 figures. It was submitted to peer review on August 15, 200

    Conductivity and redox stability of new double perovskite oxide Sr 1.6 K 0.4 Fe 1+ x Mo 1− x O 6− δ (x= 0.2, 0.4, 0.6)

    Get PDF
    A series of new perovskite oxides Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) were synthesised by solid state reaction method. Synthesis of Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) was achieved above 700 °C in 5 % H2/Ar, albeit with the formation of impurity phases. Phase stability upon redox cycling was only observed for sample Sr1.6K0.4Fe1.4Mo0.6O6−δ. Redox cycling of Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) demonstrates a strong dependence on high temperature reduction to achieve high conductivities. After the initial reduction at 1200 °C in 5 %H2/Ar, then re-oxidation in air at 700 °C and further reduction at 700 °C in 5 %H2/Ar, the attained conductivities were between 0.1 and 58.4 % of the initial conductivity after reduction 1200 °C in 5 %H2/Ar depending on the composition. In the investigated new oxides, sample Sr1.6K0.4Fe1.4Mo0.6O6−δ is most redox stable also retains reasonably high electrical conductivity, ~70 S/cm after reduction at 1200 °C and 2–3 S/cm after redox cycling at 700 °C, indicating it is a potential anode for SOFCs

    Hemispheric Asymmetries in Speech Perception: Sense, Nonsense and Modulations

    Get PDF
    Background: The well-established left hemisphere specialisation for language processing has long been claimed to be based on a low-level auditory specialization for specific acoustic features in speech, particularly regarding 'rapid temporal processing'.Methodology: A novel analysis/synthesis technique was used to construct a variety of sounds based on simple sentences which could be manipulated in spectro-temporal complexity, and whether they were intelligible or not. All sounds consisted of two noise-excited spectral prominences (based on the lower two formants in the original speech) which could be static or varying in frequency and/or amplitude independently. Dynamically varying both acoustic features based on the same sentence led to intelligible speech but when either or both acoustic features were static, the stimuli were not intelligible. Using the frequency dynamics from one sentence with the amplitude dynamics of another led to unintelligible sounds of comparable spectro-temporal complexity to the intelligible ones. Positron emission tomography (PET) was used to compare which brain regions were active when participants listened to the different sounds.Conclusions: Neural activity to spectral and amplitude modulations sufficient to support speech intelligibility (without actually being intelligible) was seen bilaterally, with a right temporal lobe dominance. A left dominant response was seen only to intelligible sounds. It thus appears that the left hemisphere specialisation for speech is based on the linguistic properties of utterances, not on particular acoustic features

    Inferring Condition-Specific Modulation of Transcription Factor Activity in Yeast through Regulon-Based Analysis of Genomewide Expression

    Get PDF
    Background: A key goal of systems biology is to understand how genomewide mRNA expression levels are controlled by transcription factors (TFs) in a condition-specific fashion. TF activity is frequently modulated at the post-translational level through ligand binding, covalent modification, or changes in sub-cellular localization. In this paper, we demonstrate how prior information about regulatory network connectivity can be exploited to infer condition-specific TF activity as a hidden variable from the genomewide mRNA expression pattern in the yeast Saccharomyces cerevisiae. Methodology/Principal Findings: We first validate experimentally that by scoring differential expression at the level of gene sets or "regulons" comprised of the putative targets of a TF, we can accurately predict modulation of TF activity at the post-translational level. Next, we create an interactive database of inferred activities for a large number of TFs across a large number of experimental conditions in S. cerevisiae. This allows us to perform TF-centric analysis of the yeast regulatory network. Conclusions/Significance: We analyze the degree to which the mRNA expression level of each TF is predictive of its regulatory activity. We also organize TFs into "co-modulation networks" based on their inferred activity profile across conditions, and find that this reveals functional and mechanistic relationships. Finally, we present evidence that the PAC and rRPE motifs antagonize TBP-dependent regulation, and function as core promoter elements governed by the transcription regulator NC2. Regulon-based monitoring of TF activity modulation is a powerful tool for analyzing regulatory network function that should be applicable in other organisms. Tools and results are available online at http://bussemakerlab.org/RegulonProfiler/

    Construction of gene regulatory networks using biclustering and bayesian networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling.</p> <p>Results</p> <p>In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus) to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method.</p> <p>Conclusions</p> <p>Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.</p

    From bit to it: How a complex metabolic network transforms information into living matter

    Get PDF
    Organisms live and die by the amount of information they acquire about their environment. The systems analysis of complex metabolic networks allows us to ask how such information translates into fitness. A metabolic network transforms nutrients into biomass. The better it uses information on available nutrient availability, the faster it will allow a cell to divide. I here use metabolic flux balance analysis to show that the accuracy I (in bits) with which a yeast cell can sense a limiting nutrient's availability relates logarithmically to fitness as indicated by biomass yield and cell division rate. For microbes like yeast, natural selection can resolve fitness differences of genetic variants smaller than 10-6, meaning that cells would need to estimate nutrient concentrations to very high accuracy (greater than 22 bits) to ensure optimal growth. I argue that such accuracies are not achievable in practice. Natural selection may thus face fundamental limitations in maximizing the information processing capacity of cells. The analysis of metabolic networks opens a door to understanding cellular biology from a quantitative, information-theoretic perspective
    corecore