15 research outputs found

    Spermiogenesis and spermatozoon ultrastructure of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (Gadiformes: Merlucciidae)

    Get PDF
    Spermiogenesis and the ultrastructure of the spermatozoon of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (Linnaeus, 1758), have been studied by means of transmission electron microscopy. Spermiogenesis involves firstly the formation of a differentiation zone. It is characterized by the presence of two centrioles associated with striated rootlets, an intercentriolar body and an electron-dense material in the apical region of this zone. Later, two flagella develop from the centrioles, growing orthogonally in relation to the median cytoplasmic process. Flagella then undergo a rotation of 90° until they become parallel to the median cytoplasmic process, followed by the proximodistal fusion of the flagella with the median cytoplasmic process. The nucleus elongates and afterwards it migrates along the spermatid body. Spermiogenesis finishes with the appearance of the apical cone surrounded by the single helical crested body at the base of the spermatid. Finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of C. crassiceps is filiform and contains two axonemes of the 9 + '1' trepaxonematan pattern, a parallel nucleus, parallel cortical microtubules, and electron-dense granules of glycogen. The anterior extremity of the gamete exhibits a short electron-dense apical cone and one crested body, which turns once around the sperm cell. The first axoneme is surrounded by a ring of thick cortical microtubules that persist until the appearance of the second axoneme. Later, these thick cortical microtubules disappear and thus, the mature spermatozoon exhibits two bundles of thin cortical microtubules. The posterior extremity of the male gamete presents only the nucleus. Results are discussed and compared particularly with the available ultrastructural data on the former 'pseudophyllideans'. Two differences can be established between spermatozoa of Bothriocephalidea and Diphyllobothriidea, the type of spermatozoon (II vs I) and the presence/absence of the ring of cortical microtubules

    Spermiogenesis and spermatozoon ultrastructure of the diphyllidean cestode Echinobothrium euterpes (Neifar, Tyler and Euzet 2001) Tyler 2006, a parasite of the common guitarfish Rhinobatos rhinobatos

    Get PDF
    Spermiogenesis and the ultrastructural characters of the spermatozoon of Echinobothrium euterpes are described by means of transmission electron microscopy, including cytochemical analysis for glycogen. Materials were obtained from a common guitarfish Rhinobatos rhinobatos caught in the Gulf of Gabès (Tunisia). Spermiogenesis in E. euterpes is characterized by the orthogonal development of two unequal flagella followed by the flagellar rotation and the proximodistal fusion of these flagella with the median cytoplasmic process. The most interesting pattern characterizing the diphyllidean cestodes is the presence of a triangular body constituted by fines and dense granules without visible striation and assimilated at the striated rootlets. This pattern, only related in the Diphyllidea cestodes may be a synapomorphy of this order. Spermiogenesis is also characterized by the presence of a very short flagellum (around 1 μm long), observed in all the stages of spermiogenesis. This type of flagellum has never been commented in the diphyllidean cestodes and should be considered as an evolved character in this group. In the latest stage of spermiogenesis, this short axoneme probably degenerates. Thus, the mature spermatozoon of E. euterpes possesses only one axoneme of 9 + '1' trepaxonematan pattern. It also exhibits a single helical electron-dense crested body, a spiraled nucleus, few parallel cortical microtubules, and α-glycogen granules. Similitudes and differences between spermatozoa of diphyllideans are discussed
    corecore