84 research outputs found

    Repertoires of the Nucleosome-Positioning Dinucleotides

    Get PDF
    It is generally accepted that the organization of eukaryotic DNA into chromatin is strongly governed by a code inherent in the genomic DNA sequence. This code, as well as other codes, is superposed on the triplets coding for amino acids. The history of the chromatin code started three decades ago with the discovery of the periodic appearance of certain dinucleotides, with AA/TT and RR/YY giving the strongest signals, all with a period of 10.4 bases. Every base-pair stack in the DNA duplex has specific deformation properties, thus favoring DNA bending in a specific direction. The appearance of the corresponding dinucleotide at the distance 10.4 xn bases will facilitate DNA bending in that direction, which corresponds to the minimum energy of DNA folding in the nucleosome. We have analyzed the periodic appearances of all 16 dinucleotides in the genomes of thirteen different eukaryotic organisms. Our data show that a large variety of dinucleotides (if not all) are, apparently, contributing to the nucleosome positioning code. The choice of the periodical dinucleotides differs considerably from one organism to another. Among other 10.4 base periodicities, a strong and very regular 10.4 base signal was observed for CG dinucleotides in the genome of the honey bee A. mellifera. Also, the dinucleotide CG appears as the only periodical component in the human genome. This observation seems especially relevant since CpG methylation is well known to modulate chromatin packing and regularity. Thus, the selection of the dinucleotides contributing to the chromatin code is species specific, and may differ from region to region, depending on the sequence context

    Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism?

    Get PDF
    Hemiparasites are known to influence community structure and ecosystem functioning, but the underlying mechanisms are not well studied. Variation in the impacts of hemiparasites on diversity and production could be due to the difference in the relative strength of two interacting pathways: direct negative effects of parasitism and positive effects on N availability via litter. Strong effects of parasitism should result in substantial changes in diversity and declines in productivity. Conversely, strong litter effects should result in minor changes in diversity and increased productivity. We conducted field-based surveys to determine the association of Castillejaoccidentalis with diversity and productivity in the alpine tundra. To examine litter effects, we compared the decomposition of Castilleja litter with litter of four other abundant plant species, and examined the decomposition of those four species when mixed with Castilleja. Castilleja was associated with minor changes in diversity but almost a twofold increase in productivity and greater foliar N in co-occurring species. Our decomposition trials suggest litter effects are due to both the rapid N loss of Castilleja litter and the effects of mixing Castilleja litter with co-occurring species. Castilleja produces litter that accelerates decomposition in the alpine tundra, which could accelerate the slow N cycle and boost productivity. We speculate that these positive effects of litter outweigh the effects of parasitism in nutrient-poor systems with long-lived hemiparasites. Determining the relative importance of parasitism and litter effects of this functional group is crucial to understand the strong but variable roles hemiparasites play in affecting community structure and ecosystem processes

    THE IMPACT OF DIETARY PROTEIN OR AMINO ACID SUPPLEMENTATION ON MUSCLE MASS AND STRENGTH IN ELDERLY PEOPLE: INDIVIDUAL PARTICIPANT DATA AND META-ANALYSIS OF RCT’S

    Get PDF
    Objectives Increasing protein or amino acid intake has been promoted as a promising strategy to increase muscle mass and strength in elderly people, however, long-term intervention studies show inconsistent findings. Therefore, we aim to determine the impact of protein or amino acid supplementation compared to placebo on muscle mass and strength in older adults by combining the results from published trials in a metaanalysis and pooled individual participant data analysis. Design We searched Medline and Cochrane databases and performed a meta-analysis on eight available trials on the effect of protein or amino acid supplementation on muscle mass and strength in older adults. Furthermore, we pooled individual data of six of these randomized double-blind placebo-controlled trials. The main outcomes were change in lean body mass and change in muscle strength for both the meta-analysis and the pooled analysis. Results The meta-analysis of eight studies (n=557) showed no significant positive effects of protein or amino acid supplementation on lean body mass (mean difference: 0.014 kg: 95% CI -0.152; 0.18), leg press strength (mean difference: 2.26 kg: 95% CI -0.56; 5.08), leg extension strength (mean difference: 0.75 kg: 95% CI: -1.96, 3.47) or handgrip strength (mean difference: -0.002 kg: 95% CI -0.182; 0.179). Likewise, the pooled analysis showed no significant difference between protein and placebo treatment on lean body mass (n=412: p=0.78), leg press strength (n=121: p=0.50), leg extension strength (n=121: p=0.16) and handgrip strength (n=318: p=0.37). Conclusions There is currently no evidence to suggest that protein or amino acid supplementation without concomitant nutritional or exercise interventions increases muscle mass or strength in predominantly healthy elderly people

    Novel essential amino acid supplements enriched with L-leucine facilitate increased protein and energy intakes in older women: a randomised controlled trial

    Get PDF
    Background: Inadequate protein intake (PI), containing a sub-optimal source of essential amino acids (EAAs), and reduced appetite are contributing factors to age-related sarcopenia. The satiating effects of dietary protein per se may negatively affect energy intake (EI), thus there is a need to explore alternative strategies to facilitate PI without compromising appetite and subsequent EI. Methods: Older women completed two experiments (EXP1 and EXP2) where they consumed either a Bar (565 kJ), a Gel (477 kJ), both rich in EAAs (7.5 g, 40% L-leucine), or nothing (Control). In EXP1, participants (n=10, 68±5 years, mean±SD) consumed Bar, Gel or Control with appetite sensations and appetite-related hormonal responses monitored for one hour, followed by consumption of an ad libitum breakfast (ALB). In EXP2, participants (n=11, 69±5 years) ingested Bar, Gel or Control alongside an ALB. Results: In EXP1, EI at ALB was not different (P=0.674) between conditions (1179±566, 1254±511, 1206±550 kJ for the Control, Bar, and Gel respectively). However, total EI was significantly higher in the Bar and Gel compared to the Control after accounting for the energy content of the supplements (P<0.0005). Analysis revealed significantly higher appetite Area under the Curve (AUC) (P<0.007), a tendency for higher acylated ghrelin AUC (P=0.087), and significantly lower pancreatic polypeptide AUC (P=0.02) in the Control compared with the Bar and Gel. In EXP2, EI at ALB was significantly higher (P=0.028) in the Control (1282±513 kJ) compared to the Bar (1026±565 kJ) and Gel (1064±495 kJ). However, total EI was significantly higher in the Bar and Gel after accounting for the energy content of the supplements (P<0.007). Conclusions: Supplementation with either the Bar or Gel increased total energy intake whether consumed one hour before or during breakfast. This may represent an effective nutritional means for addressing protein and total energy deficiencies in older women

    Features, Causes and Consequences of Splanchnic Sequestration of Amino Acid in Old Rats

    Get PDF
    RATIONALE: In elderly subjects, splanchnic extraction of amino acids (AA) increases during meals in a process known as splanchnic sequestration of amino acids (SSAA). This process potentially contributes to the age-related progressive decline in muscle mass via reduced peripheral availability of dietary AA. SSAA mechanisms are unknown but may involve an increased net utilization of ingested AA in the splanchnic area. OBJECTIVES: Using stable isotope methodology in fed adult and old rats to provide insight into age-related SSAA using three hypotheses: 1) an increase in protein synthesis in the gut and/or the liver, 2) an increase in AA oxidation related to an increased ureagenesis, and 3) Kupffer cell (KC) activation consequently to age-related low-grade inflammation. FINDINGS: Splanchnic extraction of Leu (SPELeu) was doubled in old rats compared to adult rats and was not changed after KC inactivation. No age-related effects on gut and liver protein synthesis were observed, but urea synthesis was lower in old rats and negatively correlated to liver Arg utilization. Net whole-body protein synthesis and arterial AA levels were lower in old rats and correlated negatively with SPELeu. CONCLUSION: SSAA is not the consequence of age-related alterations in ureagenesis, gut or liver protein synthesis or of KC activity. However, SSAA may be related to reduced net whole-body protein synthesis and consequently to the reduced lean body mass that occurs during aging

    Salinity and Simulated Herbivory Influence Spartina alterniflora Traits and Defense Strategy

    Get PDF
    Sea level rise is expected to push saline waters into previously fresher regions of estuaries, and higher salinities may expose oligohaline marshes to invertebrate herbivores typically constrained by salinity. The smooth cordgrass, Spartina alterniflora (syn. Sporobolus alterniflorus), can defend itself against herbivores in polyhaline marshes, however it is not known if S. alterniflora’s defense varies along the mesohaline to oligohaline marsh gradient in estuaries. I found that S. alterniflora from a mesohaline marsh is better defended than plants from an oligohaline marsh, supporting the optimal defense theory. Higher salinity treatments lowered carbon content, C:N, and new stem biomass production, traits associated with a tolerance strategy, suggesting that salinity may mediate the defense response of S. alterniflora. Further, simulated herbivory increased the nitrogen content and decreased C:N of S. alterniflora. This indicates that grazing may increase S. alterniflora susceptibility to future herbivory via improved forage quality. Simulated herbivory also decreased both belowground and new stem biomass production, highlighting a potential pathway in which herbivory can indirectly facilitate marsh loss, as S. alterniflora biomass is critical for vertical accretion and marsh stability under future sea level rise scenarios

    Differential Influence of Clonal Integration on Morphological and Growth Responses to Light in Two Invasive Herbs

    Get PDF
    Background and aims: In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions. Methods: In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85 % shade and their morphological and growth responses were assessed. Key results: The influence of clonal integration on the light reaction norm (connection6light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection6light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mothe

    Equity Ownership Strategy in Greenfield Investments : Influences of Host Country Infrastructure and MNE Resources in Emerging Markets

    Get PDF
    This chapter addresses equity ownership strategy in greenfield investments by multinational enterprises (MNEs) in the emerging markets (EMs). It is one of the few studies to hypothesize and analyze influences of host EM physical infrastructure in relation to investment decisions of MNEs. We use resource dependence theory (RDT) as a theoretical basis and test the moderating effects of firm resources like size and host country investment experience. Moreover, the current study assumes a more nuanced approach to studying equity ownership by analyzing wholly owned subsidiaries versus joint ventures (JVs) and including majority versus minority JVs in the analysis as well. The empirical results based on greenfield investments undertaken by Nordic (Danish, Finnish, Norwegian, and Swedish) MNEs in EMs during 1990–2015 reveals the importance of host country physical infrastructure for high equity ownership strategy. Moreover, host country investment experience moderates the effect of physical infrastructure on equity ownership strategy. Finally, the analysis of a sub-sample of greenfield JVs reveals that determinants of equity ownership strategy differ somewhat between greenfield JV or greenfield wholly owned subsidiaries (WOS).© The Author(s) 2019.fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore