7,067 research outputs found
Race, Culture & Abuse of Persons with Disabilities
This chapter will explore how race and culture influence the lives of persons with disabilities who are experiencing abuse. The discussion will be framed by an intersectional lens and will be informed by cultural humility and critical race theory. Practitioners need to remain open to the idea that they cannot and will not know all there is to know about any given culture, and they should be open to hearing about their clients’ understanding and experiences of culture. Rather than knowing certain pieces of “knowledge” about a cultural group, it is more important to understand what pieces of culture the clients embrace or reject. This chapter will conclude with a composite client case example of a female, middle-aged, Korean immigrant with Multiple Sclerosis, who is very active in her Christian church, and who is being abused by her husband. Discussion of this case will highlight the intersectional context of the client’s experience and how they may influence her decision to seek help (and from whom) as well as her experience of receiving help. The case discussion also highlights the practitioner’s values and behaviors that are consistent with cultural humility and critical race theory
Rural Household Food Consumption in China: Evidence from the Rural Household Survey
Food Consumption/Nutrition/Food Safety,
Exploring local quantum many-body relaxation by atoms in optical superlattices
We establish a setting - atoms in optical superlattices with period 2 - in
which one can experimentally probe signatures of the process of local
relaxation and apparent thermalization in non-equilibrium dynamics without the
need of addressing single sites. This opens up a way to explore the convergence
of subsystems to maximum entropy states in quenched quantum many-body systems
with present technology. Remarkably, the emergence of thermal states does not
follow from a coupling to an environment, but is a result of the complex
non-equilibrium dynamics in closed systems. We explore ways of measuring the
relevant signatures of thermalization in this analogue quantum simulation of a
relaxation process, exploiting the possibilities offered by optical
superlattices.Comment: 4 pages, 3 figures, version to published in Physical Review Letter
Hydrodynamic Waves in Regions with Smooth Loss of Convexity of Isentropes. General Phenomenological Theory
General phenomenological theory of hydrodynamic waves in regions with smooth
loss of convexity of isentropes is developed based on the fact that for most
media these regions in p-V plane are anomalously small. Accordingly the waves
are usually weak and can be described in the manner analogous to that for weak
shock waves of compression. The corresponding generalized Burgers equation is
derived and analyzed. The exact solution of the equation for steady shock waves
of rarefaction is obtained and discusses.Comment: RevTeX, 4 two-column pages, no figure
On single-copy entanglement
The largest eigenvalue of the reduced density matrix for quantum chains is
shown to have a simple physical interpretation and power-law behaviour in
critical systems. This is verified numerically for XXZ spin chains.Comment: 4 pages, 2 figures, note added, typo correcte
Half the entanglement in critical systems is distillable from a single specimen
We establish that the leading critical scaling of the single-copy
entanglement is exactly one half of the entropy of entanglement of a block in
critical infinite spin chains in a general setting, using methods of conformal
field theory. Conformal symmetry imposes that the single-copy entanglement for
critical many-body systems scales as E_1(\rho_L)=(c/6) \log L- (c/6)
(\pi^2/\log L) + O(1/L), where L is the number of constituents in a block of an
infinite chain and c corresponds to the central charge. This proves that from a
single specimen of a critical chain, already half the entanglement can be
distilled compared to the rate that is asymptotically available. The result is
substantiated by a quantitative analysis for all translationally invariant
quantum spin chains corresponding to general isotropic quasi-free fermionic
models. An analytic example of the XY model shows that away from criticality
the above simple relation is only maintained near the quantum phase transition
point.Comment: 4 pages RevTeX, 1 figure, final versio
TIA Software User's Manual
This user's manual describes the installation and operation of TIA, the Thermal-Imaging acquisition and processing Application, developed by the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center, Hampton, Virginia. TIA is a user friendly graphical interface application for the Macintosh 2 and higher series computers. The software has been developed to interface with the Perceptics/Westinghouse Pixelpipe(TM) and PixelStore(TM) NuBus cards and the GW Instruments MacADIOS(TM) input-output (I/O) card for the Macintosh for imaging thermal data. The software is also capable of performing generic image-processing functions
Flashing annihilation term of a logistic kinetic as a mechanism leading to Pareto distributions
It is shown analytically that the flashing annihilation term of a Verhulst
kinetic leads to the power--law distribution in the stationary state. For the
frequency of switching slower than twice the free growth rate this provides the
quasideterministic source of a Levy noises at the macroscopic level.Comment: 1 fi
In search for natural wormholes
We have investigated 631 time profiles of gamma ray bursts from the BATSE
database searching for observable signatures produced by microlensing events
related to natural wormholes. The results of this first search of topologically
nontrivial objects in the Universe can be used to constrain their number and
mass.Comment: Mod. Phys. Lett. A. (in press) Latex (revtex style) with no figure
Area laws for the entanglement entropy - a review
Physical interactions in quantum many-body systems are typically local:
Individual constituents interact mainly with their few nearest neighbors. This
locality of interactions is inherited by a decay of correlation functions, but
also reflected by scaling laws of a quite profound quantity: The entanglement
entropy of ground states. This entropy of the reduced state of a subregion
often merely grows like the boundary area of the subregion, and not like its
volume, in sharp contrast with an expected extensive behavior. Such "area laws"
for the entanglement entropy and related quantities have received considerable
attention in recent years. They emerge in several seemingly unrelated fields,
in the context of black hole physics, quantum information science, and quantum
many-body physics where they have important implications on the numerical
simulation of lattice models. In this Colloquium we review the current status
of area laws in these fields. Center stage is taken by rigorous results on
lattice models in one and higher spatial dimensions. The differences and
similarities between bosonic and fermionic models are stressed, area laws are
related to the velocity of information propagation, and disordered systems,
non-equilibrium situations, classical correlation concepts, and topological
entanglement entropies are discussed. A significant proportion of the article
is devoted to the quantitative connection between the entanglement content of
states and the possibility of their efficient numerical simulation. We discuss
matrix-product states, higher-dimensional analogues, and states from
entanglement renormalization and conclude by highlighting the implications of
area laws on quantifying the effective degrees of freedom that need to be
considered in simulations.Comment: 28 pages, 2 figures, final versio
- …