298 research outputs found
Coupling GIS and LCA for biodiversity assessments of land use
Geospatial details about land use are necessary to assess its potential impacts on biodiversity. Geographic information systems (GIS) are adept at modeling land use in a spatially explicit manner, while life cycle assessment (LCA) does not conventionally utilize geospatial information. This study presents a proof-of-concept approach for coupling GIS and LCA for biodiversity assessments of land use and applies it to a case study of ethanol production from agricultural crops in California.
GIS modeling was used to generate crop production scenarios for corn and sugar beets that met a range of ethanol production targets. The selected study area was a four-county region in the southern San Joaquin Valley of California, USA. The resulting land use maps were translated into maps of habitat types. From these maps, vectors were created that contained the total areas for each habitat type in the study region. These habitat compositions are treated as elementary input flows and used to calculate different biodiversity impact indicators in a second paper (Geyer et al., submitted).
Ten ethanol production scenarios were developed with GIS modeling. Current land use is added as baseline scenario. The parcels selected for corn and sugar beet production were generally in different locations. Moreover, corn and sugar beets are classified as different habitat types. Consequently, the scenarios differed in both the habitat types converted and in the habitat types expanded. Importantly, land use increased nonlinearly with increasing ethanol production targets. The GIS modeling for this study used spatial data that are commonly available in most developed countries and only required functions that are provided in virtually any commercial or open-source GIS software package.
This study has demonstrated that GIS-based inventory modeling of land use allows important refinements in LCA theory and practice. Using GIS, land use can be modeled as a geospatial and nonlinear function of output. For each spatially explicit process, land use can be expressed within the conventional structure of LCA methodology as a set of elementary input flows of habitat types
Functional redundancy between Apc and Apc2 regulates tissue homeostasis and prevents tumorigenesis in murine mammary epithelium
Aberrant Wnt signaling within breast cancer is associated with poor prognosis, but regulation of this pathway in breast tissue remains poorly understood and the consequences of immediate or long-term dysregulation remain elusive. The exact contribution of the Wnt-regulating proteins adenomatous polyposis coli (APC) and APC2 in the pathogenesis of human breast cancer are ill-defined, but our analysis of publically available array data sets indicates that tumors with concomitant low expression of both proteins occurs more frequently in the ‘triple negative’ phenotype, which is a subtype of breast cancer with particularly poor prognosis. We have used mouse transgenics to delete Apc and/or Apc2 from mouse mammary epithelium to elucidate the significance of these proteins in mammary homeostasis and delineate their influences on Wnt signaling and tumorigenesis. Loss of either protein alone failed to affect Wnt signaling levels or tissue homeostasis. Strikingly, concomitant loss led to local disruption of β-catenin status, disruption in epithelial integrity, cohesion and polarity, increased cell division and a distinctive form of ductal hyperplasia with ‘squamoid’ ghost cell nodules in young animals. Upon aging, the development of Wnt activated mammary carcinomas with squamous differentiation was accompanied by a significantly reduced survival. This novel Wnt-driven mammary tumor model highlights the importance of functional redundancies existing between the Apc proteins both in normal homeostasis and in tumorigenesis
NLRP1 variant M1184V decreases inflammasome activation in the context of DPP9 inhibition and asthma severity.
BackgroundNLRP1 is an innate immune sensor that can form cytoplasmic inflammasome complexes. Polymorphisms in NLRP1 are linked to asthma; however, there is currently no functional or mechanistic explanation for this.ObjectiveWe sought to clarify the role of NLRP1 in asthma pathogenesis.MethodsResults from the GALA II cohort study were used to identify a link between NLRP1 and asthma in Mexican Americans. In vitro and in vivo models for NLRP1 activation were applied to investigate the role of this inflammasome in asthma at the molecular level.ResultsWe document the association of an NLRP1 haplotype with asthma for which the single nucleotide polymorphism rs11651270 (M1184V) individually is the most significant. Surprisingly, M1184V increases NLRP1 activation in the context of N-terminal destabilization, but decreases NLRP1 activation on dipeptidyl peptidase 9 inhibition. In vitro studies demonstrate that M1184V increases binding to dipeptidyl peptidase 9, which can account for its inhibitory role in this context. In addition, in vivo data from a mouse model of airway inflammation reveal a protective role for NLRP1 inflammasome activation reducing eosinophilia in this setting.ConclusionsLinking our in vitro and in vivo results, we found that the NLRP1 variant M1184V reduces inflammasome activation in the context of dipeptidyl peptidase 9 inhibition and could thereby increase asthma severity. Our studies may have implications for the treatment of asthma in patients carrying this variant of NLRP1
- …
