2,023 research outputs found

    The extraordinary evolutionary history of the reticuloendotheliosis viruses

    Get PDF
    The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Evolution favors protein mutational robustness in sufficiently large populations

    Get PDF
    BACKGROUND: An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. RESULTS: Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by existing mathematical theories, and can be quantitatively related to the way that the proteins occupy their neutral network. CONCLUSIONS: Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon may contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations

    What do young adolescents think about taking part in longitudinal self-harm research?: findings from a school-based study

    Get PDF
    Background: Research about self-harm in adolescence is important given the high incidence in youth, and strong links to suicide and other poor outcomes. Clarifying the impact of involvement in school based self-harm studies on young adolescents is an ethical priority given heightened risk at this developmental stage. Methods: Here, 594 school-based students aged mainly 13-14 years completed a survey on self-harm at baseline and again 12-weeks later. Change in mood following completion of each survey, ratings and thoughts about participation, and responses to a mood-mitigation activity were analysed using a multi-method approach. Results: Baseline participation had no overall impact on mood. However, boys and girls reacted differently to the survey depending on self-harm status. Having a history of self-harm had a negative impact on mood for girls, but a positive impact on mood for boys. In addition, participants rated the survey in mainly positive/neutral terms, and cited benefits including personal insight and altruism. At follow-up, there was a negative impact on mood following participation, but no significant effect of gender or self-harm status. Ratings at follow-up were mainly positive/neutral. Those who had self-harmed reported more positive and fewer negative ratings than at baseline: the opposite pattern of response was found for those who had not self-harmed. Mood mitigation activities were endorsed. Conclusions: Self-harm research with youth is feasible in school settings. Most young people are happy to take part and cite important benefits. However, the impact of participation in research appears to vary according to gender, self-harm risk and method/time of assessment. The impact of repeated assessment requires clarification. Simple mood-elevation techniques may usefully help to mitigate distress

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    A nonlinear updating algorithm captures suboptimal inference in the presence of signal-dependent noise

    Get PDF
    Bayesian models have advanced the idea that humans combine prior beliefs and sensory observations to optimize behavior. How the brain implements Bayes-optimal inference, however, remains poorly understood. Simple behavioral tasks suggest that the brain can flexibly represent probability distributions. An alternative view is that the brain relies on simple algorithms that can implement Bayes-optimal behavior only when the computational demands are low. To distinguish between these alternatives, we devised a task in which Bayes-optimal performance could not be matched by simple algorithms. We asked subjects to estimate and reproduce a time interval by combining prior information with one or two sequential measurements. In the domain of time, measurement noise increases with duration. This property takes the integration of multiple measurements beyond the reach of simple algorithms. We found that subjects were able to update their estimates using the second measurement but their performance was suboptimal, suggesting that they were unable to update full probability distributions. Instead, subjects’ behavior was consistent with an algorithm that predicts upcoming sensory signals, and applies a nonlinear function to errors in prediction to update estimates. These results indicate that the inference strategies employed by humans may deviate from Bayes-optimal integration when the computational demands are high
    corecore