43 research outputs found

    Characterization of the commercially-available fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a marker for chloroquine resistance and uptake in a 96-well plate assay

    Get PDF
    Chloroquine was a cheap, extremely effective drug against Plasmodium falciparum until resistance arose. One approach to reversing resistance is the inhibition of chloroquine efflux from its site of action, the parasite digestive vacuole. Chloroquine accumulation studies have traditionally relied on radiolabelled chloroquine, which poses several challenges. There is a need for development of a safe and biologically relevant substitute. We report here a commercially-available green fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a proxy for chloroquine accumulation. This compound localized to the digestive vacuole of the parasite as observed under confocal microscopy, and inhibited growth of chloroquine-sensitive strain 3D7 more extensively than in the resistant strains 7G8 and K1. Microplate reader measurements indicated suppression of LynxTag-CQGREEN efflux after pretreatment of parasites with known reversal agents. Microsomes carrying either sensitive or resistant-type PfCRT were assayed for uptake; resistant-type PfCRT exhibited increased accumulation of LynxTag-CQGREEN, which was suppressed by pretreatment with known chemosensitizers. Eight laboratory strains and twelve clinical isolates were sequenced for PfCRT and Pgh1 haplotypes previously reported to contribute to drug resistance, and pfmdr1 copy number and chloroquine IC50s were determined. These data were compared with LynxTag-CQGREEN uptake/fluorescence by multiple linear regression to identify genetic correlates of uptake. Uptake of the compound correlated with the logIC50 of chloroquine and, more weakly, a mutation in Pgh1, F1226Y

    Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies

    Get PDF
    Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes.This work was funded in part by the National Institutes of Health (R01 AI50234, AI124678 and AI109023) and a Burroughs Wellcome Fund Investigator in Pathogenesis of Infectious Diseases award to D.A.F. This research also received funding from the Portuguese Fundacao para a Ciencia e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2-O Novo Norte); from the Quadro de Referencia Estrategico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto Estrategico - LA 26 - 2013-2014 (PEst-C/SAU/LA0026/2013). M.I.V. is the recipient of a postdoctoral fellowship from FCT/Ministerio da Ciencia e Ensino Superior, Portugal-MCES (SFRH/BPD/76614/2011). A.M.L. was supported by an Australian National Health and Medical Research Council (NHMRC) Overseas Biomedical Fellowship (585519). R.E.M. was supported by an NHMRC RD Wright Biomedical Fellowship (1053082). A.C.U. was supported by an Irving scholarship from Columbia University. We thank Dr Andrea Ecker for her help with plasmid design and Pedro Ferreira for his expert help with Fig. 6.info:eu-repo/semantics/publishedVersio

    Antimalarial Exposure Delays Plasmodium falciparum Intra-Erythrocytic Cycle and Drives Drug Transporter Genes Expression

    Get PDF
    BACKGROUND: Multi-drug resistant Plasmodium falciparum is a major obstacle to malaria control and is emerging as a complex phenomenon. Mechanisms of drug evasion based on the intracellular extrusion of the drug and/or modification of target proteins have been described. However, cellular mechanisms related with metabolic activity have also been seen in eukaryotic systems, e.g. cancer cells. Recent observations suggest that such mechanism may occur in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We therefore investigated the effect of mefloquine exposure on the cell cycle of three P. falciparum clones (3D7, FCB, W2) with different drug susceptibilities, while investigating in parallel the expression of four genes coding for confirmed and putative drug transporters (pfcrt, pfmdr1, pfmrp1 and pfmrp2). Mefloquine induced a previously not described dose and clone dependent delay in the intra-erythrocytic cycle of the parasite. Drug impact on cell cycle progression and gene expression was then merged using a non-linear regression model to determine specific drug driven expression. This revealed a mild, but significant, mefloquine driven gene induction up to 1.5 fold. CONCLUSIONS/SIGNIFICANCE: Both cell cycle delay and induced gene expression represent potentially important mechanisms for parasites to escape the effect of the antimalarial drug

    Mechanism of cellular rejection in transplantation

    Get PDF
    The explosion of new discoveries in the field of immunology has provided new insights into mechanisms that promote an immune response directed against a transplanted organ. Central to the allograft response are T lymphocytes. This review summarizes the current literature on allorecognition, costimulation, memory T cells, T cell migration, and their role in both acute and chronic graft destruction. An in depth understanding of the cellular mechanisms that result in both acute and chronic allograft rejection will provide new strategies and targeted therapeutics capable of inducing long-lasting, allograft-specific tolerance

    Economic measures of forecast accuracy for demand planning : a case-based discussion

    No full text
    Successful demand planning relies on accurate demand forecasts. Existing demand planning software typically employs (univariate) time series models for this purpose. These methods work well if the demand of a product follows regular patterns. Their power and accuracy are, however, limited if the patterns are disturbed and the demand is driven by irregular external factors such as promotions, events, or weather conditions. Hence, modern machine-learning-based approaches take into account external drivers for improved forecasting and combine various forecasting approaches with situation-dependent strengths. Yet, to substantiate the strength and the impact of single or new methodologies, one is left with the question how to measure and compare the performance or accuracy of different forecasting methods. Standard measures such as root mean square error (RMSE) and mean absolute percentage error (MAPE) may allow for ranking the methods according to their accuracy, but in many cases these measures are difficult to interpret or the rankings are incoherent among different measures. Moreover, the impact of forecasting inaccuracies is usually not reflected by standard measures. In this chapter, we discuss this issue using the example of forecasting the demand of food products. Furthermore, we define alternative measures that provide intuitive guidance for decision makers and users of demand forecasting
    corecore