14 research outputs found
Bacteria as Emerging Indicators of Soil Condition
Bacterial communities are important for the health and productivity of soil ecosystems and have great potential as novel indicators of environmental perturbations. To assess how they are affected by anthropogenic activity and to determine their ability to provide alternative metrics of environmental health, we sought to define which soil variables bacteria respond to across multiple soil types and land uses. We determined, through 16S rRNA gene amplicon sequencing, the composition of bacterial communities in soil samples from 110 natural or human-impacted sites, located up to 300 km apart. Overall, soil bacterial communities varied more in response to changing soil environments than in response to changes in climate or increasing geographic distance. We identified strong correlations between the relative abundances of members of Pirellulaceae and soil pH, members of Gaiellaceae and carbon-to-nitrogen ratios, members of Bradyrhizobium and the levels of Olsen P (a measure of plant available phosphorus), and members of Chitinophagaceae and aluminum concentrations. These relationships between specific soil attributes and individual soil taxa not only highlight ecological characteristics of these organisms but also demonstrate the ability of key bacterial taxonomic groups to reflect the impact of specific anthropogenic activities, even in comparisons of samples across large geographic areas and diverse soil types. Overall, we provide strong evidence that there is scope to use relative taxon abundances as biological indicators
of soil conditio
Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors
The principle of using ultrasonic computed tomography (UCT) clinically for mapping tissue acoustic properties was suggested almost 40 years ago. Despite strong research activity, UCT been unable to rival its x-ray counterpart in terms of the ability to distinguish tissue pathologies. Conventional piezoelectric detectors deployed in UCT are termed phase-sensitive (PS) and it is well established that this property can lead to artefacts related to refraction and phase-cancellation that mask true tissue structure, particularly for reconstructions involving attenuation. Equally, it has long been known that phase-insensitive (PI) detectors are more immune to this effect, although sufficiently sensitive devices for clinical use have not been available. This paper explores the application of novel PI detectors to UCT. Their operating principle is based on exploiting the pyroelectric properties of the piezoelectric polymer polyvinylidene difluoride. An important detector performance characteristic which makes it particularly suited to UCT, is the lack of directionality of the PI response, relative to the PS detector mode of operation. The performance of the detectors is compared to conventional PS detection methods, for quantitatively assessing the attenuation distribution within various test objects, including a two-phase polyurethane phantom. UCT images are presented for a range of single detector apertures; tomographic reconstruction images being compared with the known structure of phantoms containing inserts as small as 3 mm, which were readily imaged. For larger diameter inserts (>10 mm), the transmitter–detector combination was able to establish the attenuation coefficient of the insert to within ±10% of values determined separately from plane-wave measurements on representative material plaques. The research has demonstrated that the new PI detectors are significantly less susceptible to refraction and phase-cancellation artefacts, generating realistic images in situations where conventionally-employed through-transmission PS detection techniques were unable to do so. The implications of the study to the potential screening of breast disease are discussed