55,853 research outputs found

    Superlens made of a metamaterial with extreme effective parameters

    Get PDF
    We propose a superlens formed by an ultra-dense array of crossed metallic wires. It is demonstrated that due to the anomalous interaction between crossed wires, the structured substrate is characterized by an anomalously high index of refraction and supports strongly confined guided modes with very short propagation wavelengths. It is theoretically proven that a planar slab of such structured material makes a superlens that may compensate for the attenuation introduced by free-space propagation and restore the subwavelength details of the source. The bandwidth of the proposed device can be quite significant since the response of the structured substrate is non-resonant. The theoretical results are fully supported by numerical simulations.Comment: Accepted for publication in Phys. Rev. B (in press

    Wavepacket scattering on graphene edges in the presence of a (pseudo) magnetic field

    Full text link
    The scattering of a Gaussian wavepacket in armchair and zigzag graphene edges is theoretically investigated by numerically solving the time dependent Schr\"odinger equation for the tight-binding model Hamiltonian. Our theory allows to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well know skipping orbits are observed. However, our results demonstrate that in the case of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an armchair edge results in a non-propagating edge state.Comment: 8 pages, 7 figure

    Gemini spectra of 12000K white dwarf stars

    Get PDF
    We report signal-to-noise ratio SNR ~ 100 optical spectra for four DA white dwarf stars acquired with the GMOS spectrograph of the 8m Gemini north telescope. These stars have 18<g<19 and are around Teff ~ 12000 K, were the hydrogen lines are close to maximum. Our purpose is to test if the effective temperatures and surface gravities derived from the relatively low signal-to-noise ratio ( ~ 21) optical spectra acquired by the Sloan Digital Sky Survey through model atmosphere fitting are trustworthy. Our spectra range from 3800A to 6000A, therefore including H beta to H9. The H8 line was only marginally present in the SDSS spectra, but is crucial to determine the gravity. When we compare the values published by Kleinman et al. (2004) and Eisenstein et al. (2006) with our line-profile (LPT) fits, the average differences are: Delta Teff ~ 320 K, systematically lower in SDSS, and Delta log g ~ 0.24 dex, systematically larger in SDSS. The correlation between gravity and effective temperature can only be broken at wavelengths bluer than 3800 A. The uncertainties in Teff are 60% larger, and in log g larger by a factor of 4, than the Kleinman et al. (2004) and Eisenstein et al. (2006) internal uncertainties.Comment: 11 pages and 8 figure

    Study od a Slice at +9 to +15 degrees of Declination: I. The Neutral Hydrogen Content of Galaxies in Loose Groups

    Full text link
    We examine the H1 content of spiral galaxies in groups by using a catalog of loose groups of galaxies identified in a magnitude limited sample m < 15.7 spanning the range 8 h to 18 h in right ascension and +9 to +15 in declination. The redshift completeness of the galaxy sample is ~95%. No significant effect of H1 depletion is found, although there may be a hint that the earliest type spirals are slightly deficient.Comment: 10 pages, Latex, 3 tables, 5 figures, to appear in the Astronomical Journa
    • …
    corecore