9,651 research outputs found

    Short-lived solar burst spectral component at f approximately 100 GHz

    Get PDF
    A new kind of burst emission component was discovered, exhibiting fast and distinct pulses (approx. 60 ms durations), with spectral peak emission at f approx. 100 GHz, and onset time coincident to hard X-rays to within approx. 128 ms. These features pose serious constraints for the interpretation using current models. One suggestion assumes the f approx. 100 GHz pulses emission by synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays originate from inverse Compton scattering of the electrons on the synchrotron photons. Several crucial observational tests are needed for the understanding of the phenomenon, requiring high sensitivity and high time resolution (approx. 1 ms) simultaneous to high spatial resolution (0.1 arcsec) at f approx. 110 GHz and hard X-rays

    The possible importance of synchrotron/inverse Compton losses to explain fast mm-wave and hard X-ray emission of a solar event

    Get PDF
    The solar burst of 21 May 1984, presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency of greater than or approximately 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (0.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and greater than or approximately 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-ray power law indices were found. A synchrotron/inverse Compton model was applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures

    The possible importance of synchrotron/inverse Compton losses to explain fast MM-wave and hard X-ray emission of a solar event

    Get PDF
    The solar burst of 21 May 1984 presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency or approx. 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and or approx. 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-rays power law indices have been found. A synchrotron/inverse Compton model has been applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures

    A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)

    Get PDF
    High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses

    Rapid spectral and flux time variations in a solar burst observed at various dm-mm wavelengths and at hard X-rays

    Get PDF
    A solar burst was observed with high sensitivity and time resolution at cm-mm wavelengths by two different radio observatories (Itapetinga and Algonquin), with high spectral time resolution at dm-mm wavelengths by patrol instruments (Sagamore Hill), and at hard X-rays (HXM Hinotori). At the onset of the major burst time structure there was a rapid rise in the spectral turnover frequency (from 5 to 15 GHz), in about 10s, coincident to a reduction of the spectral index in the optically thin part of the spectrum. The burst maxima were not time coincident at the optically thin radio frequencies and at the different hard X-ray energy ranges. The profiles at higher radio frequencies exhibited better time coincidence to the high energy X-rays. The hardest X-ray spectrum (-3) coincided with peak radio emission at the higher frequency (44 GHz). The event appeared to be built up by a first major injection of softer particles followed by other injections of harder particles. Ultrafast time structures were identified as superimposed on the burst emission at the cm-mm high sensitivity data at X-rays, with predominant repetition rates ranging from 2.0 to 3.5 Hz

    Hermitian Yang-Mills instantons on resolutions of Calabi-Yau cones

    Full text link
    We study the construction of Hermitian Yang-Mills instantons over resolutions of Calabi-Yau cones of arbitrary dimension. In particular, in d complex dimensions, we present an infinite family, parametrised by an integer k and a continuous modulus, of SU(d) instantons. A detailed study of their properties, including the computation of the instanton numbers is provided. We also explain how they can be used in the construction of heterotic non-Kahler compactifications.Comment: 20 pages, 1 figure; typos corrected, section 3.1 expande

    Palaeomagnetism, rock magnetism and AMS of the Cabo Magmatic Province, NE Brazil, and the opening of South Atlantic

    Get PDF
    P>Reconstruction of the South Atlantic opening has long been a matter of debate and several models have been proposed. One problem in tracing properly the Atlantic history arises from the existence of a long interval without geomagnetic reversals, the Cretaceous Normal Superchron, for which ages are difficult to assign. Palaeomagnetism may help in addressing this issue if high-quality palaeomagnetic poles are available for the two drifting continental blocks, and if precise absolute ages are available. In this work we have investigated the Cabo Magmatic Province, northeastern Brazil, recently dated at 102 +/- 1 Ma (zircon fission tracks, Ar39/Ar40). All volcanic and plutonic rocks showed stable thermal and AF demagnetization patterns, and exhibit primary magnetic signatures. AMS data also support a primary origin for the magnetic fabric and is interpreted to be contemporaneous of the rock formation. The obtained pole is located at 335.9 degrees E/87.9 degrees S (N = 24; A(95) = 2.5; K = 138) and satisfies modern quality criteria, resulting in a reference pole for South America at similar to 100 Ma. This new pole also gives an insight to test and discuss the kinematic models currently proposed for the South Atlantic opening during mid-Cretaceous

    Análise do custo de produção e da comercialização do melão orgânico produzido na região do Submédio São Francisco.

    Get PDF
    A região do Submédio São Francisco, que é o terceiro maior pólo de produção de melão do país, vem registrando nas duas últimas décadas uma drástica redução nas áreas de cultivos dessa fruta devido a baixa lucratividade da atividade quando comparada ao desempenho econômico de outros produtos hortifrutícolas explorados na zona. Entretanto, motivados pelo crescimento significativo do mercado de produtos orgânico, os produtores de melão da região estão aderindo a esse processo de cultivo como alternativa para tornar a exploração mais rentável. Considerando que a produção de melão orgânico ainda está em processo de formação na região em análise, torna-se necessário a realização de estudos que revelem o comportamento de seus custos e a rentabilidade da sua exploração. Este trabalho teve como objetivo analisar os custos de produção e de comercialização e a rentabilidade do melão orgânico produzido na região do Submédio São Francisco e comercializado no mercado de São Paulo. O estudo revela que a exploração do melão orgânico na região do Submédio São Francisco é uma atividade rentável, visto que, nos diversos parâmetros de desempenho econômico analisados, os resultados foram bastante expressivos

    Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution

    Full text link
    We explore the relations between physical and orbital properties of planets and properties of their host stars to identify the main observable signatures of the formation and evolution processes of planetary systems. We use a large sample of FGK dwarf planet hosts with stellar parameters derived in a homogeneous way from the SWEET-Cat database to study the relation between stellar metallicity and position of planets in the period-mass diagram. In the second part we use all the RV-detected planets orbiting FGK stars to explore the role of planet-disk and planet-planet interaction on the evolution of orbital properties of planets with masses above 1MJup. We show that planets orbiting metal-poor stars have longer periods than those in metal-rich systems. This trend is valid for masses at least from 10MEarth to 4MJup. Earth-like planets orbiting metal-rich stars always show shorter periods (fewer than 20 days) than those orbiting metal-poor stars. We also found statistically significant evidence that very high mass giants have on average more eccentric orbits than giant planets with lower mass.Finally, we show that the eccentricity of planets with masses higher than 4MJup tends to be lower for planets with shorter periods. Our results suggest that the planets in the P-MP diagram are evolving differently because of a mechanism that operates over a wide range of planetary masses. This mechanism is stronger or weaker depending on the metallicity of the respective system. One possibility is that planets in metal-poor disks form farther out from their central star and/or they form later and do not have time to migrate as far as the planets in metal-rich systems. The trends and dependencies obtained for very high mass planetary systems suggest that planet-disk interaction is a very important and orbit-shaping mechanism for planets in the high-mass domain. Shortened.Comment: 8 pages, 4 figures and 1 table. Accepted for publication in A&
    corecore