116 research outputs found

    Inhibitory properties of ibuprofen and its amide analogues towards the hydrolysis and cyclooxygenation of the endocannabinoid anandamide

    Get PDF
    A dual-action cyclooxygenase (COX)–fatty acid amide hydrolase (FAAH) inhibitor may have therapeutic usefulness as an analgesic, but a key issue is finding the right balance of inhibitory effects. This can be done by the design of compounds exhibiting different FAAH/COX-inhibitory potencies. In the present study, eight ibuprofen analogues were investigated. Ibuprofen (1), 2-(4-Isobutylphenyl)-N-(2-(3-methylpyridin-2-ylamino)-2-oxoethyl)propanamide (9) and N-(3-methylpyridin-2-yl)-2-(4′-isobutylphenyl)propionamide (2) inhibited FAAH with IC50 values of 134, 3.6 and 0.52 µM respectively. The corresponding values for COX-1 were ~29, ~50 and ~60 µM, respectively. Using arachidonic acid as substrate, the compounds were weak inhibitors of COX-2. However, when anandamide was used as COX-2 substrate, potency increased, with approximate IC50 values of ~6, ~10 and ~19 µM, respectively. Compound 2 was confirmed to be active in vivo in a murine model of visceral nociception, but the effects of the compound were not blocked by CB receptor antagonists. Read More: http://informahealthcare.com/doi/abs/10.3109/14756366.2011.64330

    Synthesis and carbonic anhydrase I, II, IX and XII inhibitory activity of sulfamates incorporating piperazinyl-ureido moieties

    Get PDF
    A series of sulfamates were synthesized using as lead compound SLC-0111, a sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor in Phase I clinical trials. The new derivatives incorporated ureido moieties as spacers between the benzene sulfamate fragment which binds the zinc ion from the active site, and the tail of the inhibitor, but the urea moieties were part of a substituted piperazine ring system. The derivatives (and some of their phenol precursors) were tested for the inhibition of the cytosolic, hCA I and II (off target isoforms) and the trans-membrane, tumor-associated hCA IX and XII enzymes (anticancer drug targets). Generally hCA I was not effectively inhibited, whereas many low nanomolar inhibitors were evidenced against hCA II (KIs in the range of 1.0–94.4 nM), IX (KIs in the range of 0.91–36.9 nM), and XII (KIs in the range of 1.0–84.5 nM). The best substitution fragments at the piperazine ring included the following moieties: 3-methylphenyl, 2,3-dimethylphenyl, 4-methoxyphenyl, 6-arylpyrimidine-2-yl

    Novel 2-amino-isoflavones exhibit aryl hydrocarbon receptor agonist or antagonist activity in a species/cell-specific context

    Get PDF
    The aryl hydrocarbon receptor (AhR) mediates the induction of a variety of xenobiotic metabolism genes. Activation of the AhR occurs through binding to a group of structurally diverse compounds, most notably dioxins, which are exogenous ligands. Isoflavones are part of a family which include some well characterised endogenous AhR ligands. This paper analysed a novel family of these compounds, based on the structure of 2-amino-isoflavone. Initially two luciferase-based cell models, mouse H1L6.1c2 and human HG2L6.1c3, were used to identify whether the compounds had AhR agonistic and/or antagonistic properties. This analysis showed that some of the compounds were weak agonists in mouse and antagonists in human. Further analysis of two of the compounds, Chr-13 and Chr-19, was conducted using quantitative real-time PCR in rat H4IIE and human MCF-7 cells. The results indicated that Chr-13 was an agonist in rat but an antagonist in human cells. Chr-19 was shown to be an agonist in rat but more interestingly, a partial agonist in human. Luciferase induction results not only revealed that subtle differences in the structure of the compound could produce species-specific differences in response but also dictated the ability of the compound to be an AhR agonist or antagonist. Substituted 2-amino-isoflavones represent a novel group of AhR ligands that must differentially interact with the AhR ligand binding domain to produce their species-specific agonist or antagonist activity and future ligand binding analysis and docking studies with these compounds may provide insights into the differential mechanisms of action of structurally similar compounds

    Critical role for prokineticin 2 in CNS autoimmunity

    Get PDF
    Objective: To investigate the potential role of prokineticin 2 (PK2), a bioactive peptide involved in multiple biological functions including immune modulation, in CNS autoimmune demyelinating disease. Methods: We investigated the expression of PK2 in mice with experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), and in patients with relapsing-remitting MS. We evaluated the biological effects of PK2 on expression of EAE and on development of T-cell response against myelin by blocking PK2 in vivo with PK2 receptor antagonists. We treated with PK2 immune cells activated against myelin antigen to explore the immune-modulating effects of this peptide in vitro. Results: Pk2 messenger RNA was upregulated in spinal cord and lymph node cells (LNCs) of mice with EAE. PK2 protein was expressed in EAE inflammatory infiltrates and was increased in sera during EAE. In patients with relapsing-remitting MS, transcripts for PK2 were significantly increased in peripheral blood mononuclear cells compared with healthy controls, and PK2 serum concentrations were significantly higher. A PK2 receptor antagonist prevented or attenuated established EAE in chronic and relapsing-remitting models, reduced CNS inflammation and demyelination, and decreased the production of interferon (IFN)-γ and interleukin (IL)-17A cytokines in LNCs while increasing IL-10. PK2 in vitro increased IFN-γ and IL-17A and reduced IL-10 in splenocytes activated against myelin antigen. Conclusion: These data suggest that PK2 is a critical immune regulator in CNS autoimmune demyelination and may represent a new target for therapy

    Halogenated triazinediones behave as antagonists of PKR1: in vitro and in vivo pharmacological characterization

    No full text
    Different prokineticin receptor antagonists, based on the triazinedione scaffold, were synthesized by a new efficient method. Here we demonstrated that 5-benzyltriazinedionessubstituted in position para of the benzyl group with halogens provide compounds endowed with interesting selectivity for the Prokineticin receptor 1 (PKR1). BRET technology indicates that such substitutionresults in increased affinity for thePKR1.The affinity for PKR2, always in M range, was never significantly affected by the para-halogen-benzyl pharmacophores. The analog bearing a para-bromobenzyl pharmacophore (PC-25) displayed the highest affinity for PKR1 (~18 times higher than the reference PC-1 that bears apara-ethyl benzyl group) and the highest selectivity (~300 times). The other halogen substitutedanalogs (PC-7, PC-18 and PC-35), showed selectivity for PKR1 more than 100 times higher than for PKR2. Using transgenic mice lacking one of the two PKRs we demonstrated that all these compounds were able to abolish the Bv8-induced hyperalgesia in mice still expressing the PKR1 at doses lower than those necessary to abolish hyperalgesia in mice expressing only the PKR2. The dose ratio reflected the in- vitro evaluated receptor selectivity

    Inhibitory effect of positively charged triazine antagonists of prokinecitin receptors on the transient receptor vanilloid type-1 (TRPV1) channel

    Get PDF
    Four positively charged compounds, previously shown to produce analgesic activity by interacting with prokinecitin receptor or T-type calcium channels, were tested for their ability to inhibit capsaicin-induced elevation of intracellular Ca(2+) elevation in HEK-293 cells stably transfected with the human recombinant TRPV1, with the goal of identifying novel TRPV1 open-pore inhibitors. KYS-05090 showed the highest potency as a TRPV1 antagonist, even higher than that of the open-pore triazine 8aA inhibitor. The latter showed quite remarkable agonist/desensitizer activity at the rat recombinant TRPM8 channel. The activity of KYS-05090 and the other compounds was selective because none of these compounds was able to modulate the rat TRPA1 channel. Open-pore inhibitors of TRPV1 may be a new class of multi-target analgesics with lesser side effects, such as loss of acute pain sensitivity and hyperthermia, than most TRPV1 antagonists developed so far

    Interaction of the N-(3-Methylpyridin-2-yl)amide Derivatives of Flurbiprofen and Ibuprofen with FAAH: Enantiomeric Selectivity and Binding Mode

    Get PDF
    Background Combined fatty acid amide hydrolase (FAAH) and cyclooxygenase (COX) inhibition is a promising approach for pain-relief. The Flu-AM1 and Ibu-AM5 derivatives of flurbiprofen and ibuprofen retain similar COX-inhibitory properties and are more potent inhibitors of FAAH than the parent compounds. However, little is known as to the nature of their interaction with FAAH, or to the importance of their chirality. This has been explored here. Methodology/Principal Findings FAAH inhibitory activity was measured in rat brain homogenates and in lysates expressing either wild-type or FAAHT488A-mutated enzyme. Molecular modelling was undertaken using both docking and molecular dynamics. The (R)- and (S)-enantiomers of Flu-AM1 inhibited rat FAAH with similar potencies (IC50 values of 0.74 and 0.99 μM, respectively), whereas the (S)-enantiomer of Ibu-AM5 (IC50 0.59 μM) was more potent than the (R)-enantiomer (IC50 5.7 μM). Multiple inhibition experiments indicated that both (R)-Flu-AM1 and (S)-Ibu-AM5 inhibited FAAH in a manner mutually exclusive to carprofen. Computational studies indicated that the binding site for the Flu-AM1 and Ibu-AM5 enantiomers was located between the acyl chain binding channel and the membrane access channel, in a site overlapping the carprofen binding site, and showed a binding mode in line with that proposed for carprofen and other non-covalent ligands. The potency of (R)-Flu-AM1 was lower towards lysates expressing FAAH mutated at the proposed carprofen binding area than in lysates expressing wild-type FAAH. Conclusions/Significance The study provides kinetic and structural evidence that the enantiomers of Flu-AM1 and Ibu-AM5 bind in the substrate channel of FAAH. This information will be useful in aiding the design of novel dual-action FAAH: COX inhibitors

    Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents

    No full text
    We have designed, synthesized, and evaluated as potential antitumor agents a series of 2-hydroxybenzylidene derivatives of the N-(2-trifluoromethylpiridyn-4-yl)anthranilic acid hydrazide, and some analogues bearing a (2-trifluoromethyl)piridyn-4-ylamino group in 3- or 4- position of benzohydrazide or 4- position of phenylacetohydrazide. Compounds 12e, 13e, 15e, and 16e, bearing a 4-(diethylamino)salicylidene group exhibited potent cytotoxicity, with averaged GI50 values in sub-micromolar range, and a variety of cell selectivity at nanomolar concentrations. The determination of acute toxicity in athymic nudes mice proved some compounds to be non-toxic, making them good candidates for further study as antitumor agents
    corecore