591 research outputs found

    Critical analysis of autoregressive and fast Fourier transform markers of cardiovascular variability in rats and humans

    Get PDF
    The autonomic nervous system plays an important role in physiological and pathological conditions, and has been extensively evaluated by parametric and non-parametric spectral analysis. To compare the results obtained with fast Fourier transform (FFT) and the autoregressive (AR) method, we performed a comprehensive comparative study using data from humans and rats during pharmacological blockade (in rats), a postural test (in humans), and in the hypertensive state (in both humans and rats). Although postural hypotension in humans induced an increase in normalized low-frequency (LFnu) of systolic blood pressure, the increase in the ratio was detected only by AR. In rats, AR and FFT analysis did not agree for LFnu and high frequency (HFnu) under basal conditions and after vagal blockade. The increase in the LF/HF ratio of the pulse interval, induced by methylatropine, was detected only by FFT. In hypertensive patients, changes in LF and HF for systolic blood pressure were observed only by AR; FFT was able to detect the reduction in both blood pressure variance and total power. In hypertensive rats, AR presented different values of variance and total power for systolic blood pressure. Moreover, AR and FFT presented discordant results for LF, LFnu, HF, LF/HF ratio, and total power for pulse interval. We provide evidence for disagreement in 23% of the indices of blood pressure and heart rate variability in humans and 67% discordance in rats when these variables are evaluated by AR and FFT under physiological and pathological conditions. The overall disagreement between AR and FFT in this study was 43%.FINEPFAPESPZerbini Foundatio

    STRUCTURAL CHARACTERIZATION OF THE EARLY STAGES OF THE BETA 2 MICROGLOBULIN AMYLOIDOSIS

    Get PDF
    ABSTRACT. Background. \u3b2-2 microglobulin (\u3b22m) is an amyloidogenic protein responsible for dialysis related amyloidosis in man, which result in the deposition of \u3b22m amyloid fibrils at a skeletal level. \u3b22m is a 99 residue protein formed by two \u3b2-sheets linked by a disulphide bond. In the early stages of fibril formation, \u3b22m associate into dimers and higher order oligomers that are structurally poorly characterized due to their transient nature. Furthermore, the aggregation properties of \u3b22m are affected by its fold-stability. In particular, the DE loop region, which connect the D- and the E- strands, has been reported to be crucial for the \u3b22m fold-stability. Results. Four monomeric \u3b22m cysteine mutants (S20C, E50C, W60C and S88C) were produced and their correspondent disulphide-linked homodimers were prepared (DIMC20, DIMC50, DIMC60 and DIMC88). The aggregation properties, the crystallogenesis and the oligomerisation state in solution were tested for each \u3b22m homodimer. DIMC20, DIMC50 and DIMC88 form amyloid fibrils, crystals and display a varying mixtures of dimeric and tetrameric species in solution, while DIMC60 is not amyloidogenic and is purely dimeric in solution. DIMC20 and DIMC50 X-ray structures (2.45 \uc5 and 2.7 \uc5 resolution, respectively) shared a non-covalent D-D strand interface that mediate the formation of a tetrameric assembly in both DIMC20 and DIMC50. Moreover, DIMC20 and DIMC50 in solution can catalyse the w.t. \u3b22m fibrils formation in the absence of fibril seeds at pH 7.4, strongly suggesting that the D-D strand interface is involved in the early stages of \u3b22m amyloid aggregation. In order to further characterize the role of the DE loop in \u3b22m fold-stability, a K58P-W60G \u3b22m mutant was produced and purified. The K58P-W60G \u3b22m mutant showed improved thermal and chemical stability and a faster folding compared to the w.t. \u3b22m. The crystal structure of the K58P-W60G \u3b22m mutant (1.25 \uc5 resolution) showed that the internal disulphide bond was severed as reported by Electrospray ionization-mass spectrometry spectra, which display that a fraction of the K58P-W60G \u3b22m mutant has a reduced disulphide bond. These data suggest a stabilizing role of Pro58 and stress the importance of the DE loop on the biophysical properties of the \u3b22m

    Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis

    Get PDF
    Studies on MADS-box genes in Arabidopsis and other higher eudicotyledonous flowering plants have shown that they are key regulators of flower development. Since Arabidopsis and monocotyledonous rice are distantly related plant species it is interesting to investigate whether the floral organ identity factors have been conserved in their functions, and if not, to understand the differences. Arabidopsis and rice are very suitable for these studies since they are both regarded as models for plant functional genomics. Both their genomes are sequenced and tools are available for the analysis of gene function. These developments have accelerated experiments and increased our knowledge on rice gene function. Therefore it is the right moment to perform a comparative analysis on MADS-box factors controlling floral organ identity as reported in this review

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Gynoecium size and ovule number are interconnected traits that impact seed yield

    Get PDF
    Angiosperms form the biggest group of land plants and display an astonishing diversity of floral structures. The development of the flowers greatly contributed to the evolutionary success of the angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. The female reproductive part of the flower is the gynoecium (also called pistil). Ovules arise from meristematic tissue within the gynoecium. Upon fertilization, these ovules develop into seeds while the gynoecium turns into a fruit. Gene regulatory networks involving transcription factors and hormonal communication regulate ovule primordium initiation, their spacing on the placenta, and ovule development. Ovule number and gynoecium size are usually correlated and several genetic factors that impact these traits have been identified. Understanding and fine-tuning the gene regulatory networks influencing ovule number and pistil length opens up strategies for crop yield improvement, which is pivotal in light of a rapidly growing world population. In this review, we present an overview of the current knowledge of the genes and hormones involved in determining ovule number and gynoecium size. We propose a model for the gene regulatory network that guides the developmental processes that determine seed yield

    Evaluation of sesamum gum as an excipient in matrix tablets

    Get PDF
    In developing countries modern medicines are often beyond the affordability of the majority of the population. This is due to the reliance on expensive imported raw materials despite the abundance of natural resources which could provide an equivalent or even an improved function. The aim of this study was to investigate the potential of sesamum gum (SG) extracted from the leaves of Sesamum radiatum (readily cultivated in sub-Saharan Africa) as a matrix former. Directly compressed matrix tablets were prepared from the extract and compared with similar matrices of HPMC (K4M) using theophylline as a model water soluble drug. The compaction, swelling, erosion and drug release from the matrices were studied in deionized water, 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using USP apparatus II. The data from the swelling, erosion and drug release studies were also fitted into the respective mathematical models. Results showed that the matrices underwent a combination of swelling and erosion, with the swelling action being controlled by the rate of hydration in the medium. SG also controlled the release of theophylline similar to the HPMC and therefore may have use as an alternative excipient in regions where Sesamum radiatum can be easily cultivated

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson
    corecore