746 research outputs found

    Enzymatic hydrolysis of raw and pre-treated Eucalyptus.

    Get PDF
    Ethanol from lignocellulosic biomass (LCB), such as agricultural and forest residues, is known as the second generation (2G) ethanol. Carbohydrate fractions in LCB (cellulose and hemicellulose) are not readily available for microbial fermentation and they need to be released by additional pre-treatment and hydrolysis operations. This process is intrinsically more difficult and costly. In this study the efficiency of enzymatic hydrolysis of the species Eucalyptus urophylla and the hybrid E. urophylla x E. grandis, submitted or not to alkaline pre-treatment with green liquor, has been evaluated. The hydrolysis was carried out with a enzymatic cocktail containing aggressive cellulases, high level of ?-glucosidases and hemicellulase at 6% (g enzyme/g solid), pH 5.0, 50 g.L-1 solids for 72 h, 45 °C and 250 rpm. The pre-treatment promoted disruption of the cellular structure of the samples, allowing easier accessibility for the enzymes and demonstrating higher effectiveness of enzymatic hydrolysis. The maximum efficiency of hydrolysis (81.3%) was observed for pretreated E. urophylla.SOLABIAA

    Hyperextended Cosmological Perturbation Theory: Predicting Non-linear Clustering Amplitudes

    Get PDF
    We consider the long-standing problem of predicting the hierarchical clustering amplitudes SpS_p in the strongly non-linear regime of gravitational evolution. N-body results for the non-linear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated ansatz that yields the strongly non-linear behavior of the skewness, S3S_3, starting from leading-order perturbation theory. When generalized to higher-order (p>3p>3) polyspectra or correlation functions, this ansatz leads to a good description of non-linear amplitudes in the strongly non-linear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the non-linear evolution of the bispectrum that interpolates between the weakly and strongly non-linear regimes, analogous to previous expressions for the power spectrum.Comment: 20 pages, 6 figures. Final version accepted by ApJ. Includes new paragraphs on factorizable hierarchical models and agreement of HEPT with the excursion set model for white-noise Gaussian fluctuation

    Ray Tracing Simulations of Weak Lensing by Large-Scale Structure

    Get PDF
    We investigate weak lensing by large-scale structure using ray tracing through N-body simulations. Photon trajectories are followed through high resolution simulations of structure formation to make simulated maps of shear and convergence on the sky. Tests with varying numerical parameters are used to calibrate the accuracy of computed lensing statistics on angular scales from about 1 arcminute to a few degrees. Various aspects of the weak lensing approximation are also tested. For fields a few degrees on a side the shear power spectrum is almost entirely in the nonlinear regime and agrees well with nonlinear analytical predictions. Sampling fluctuations in power spectrum estimates are investigated by comparing several ray tracing realizations of a given model. For survey areas smaller than a degree on a side the main source of scatter is nonlinear coupling to modes larger than the survey. We develop a method which uses this effect to estimate the mass density parameter Omega from the scatter in power spectrum estimates for subregions of a larger survey. We show that the power spectrum can be measured accurately from realistically noisy data on scales corresponding to 1-10 Mpc/h. Non-Gaussian features in the one point distribution function of the weak lensing convergence (reconstructed from the shear) are also sensitive to Omega. We suggest several techniques for estimating Omega in the presence of noise and compare their statistical power, robustness and simplicity. With realistic noise Omega can be determined to within 0.1-0.2 from a deep survey of several square degrees.Comment: 59 pages, 22 figures included. Matches version accepted for Ap

    Fractal Holography: a geometric re-interpretation of cosmological large scale structure

    Get PDF
    The fractal dimension of large-scale galaxy clustering has been demonstrated to be roughly DF2D_F \sim 2 from a wide range of redshift surveys. If correct, this statistic is of interest for two main reasons: fractal scaling is an implicit representation of information content, and also the value itself is a geometric signature of area. It is proposed that the fractal distribution of galaxies may thus be interpreted as a signature of holography (``fractal holography''), providing more support for current theories of holographic cosmologies. Implications for entropy bounds are addressed. In particular, because of spatial scale invariance in the matter distribution, it is shown that violations of the spherical entropy bound can be removed. This holographic condition instead becomes a rigid constraint on the nature of the matter density and distribution in the Universe. Inclusion of a dark matter distribution is also discussed, based on theoretical considerations of possible universal CDM density profiles.Comment: 13 pp, LaTeX. Revised version; to appear in JCA

    Predictions of mixed non-Gaussian cosmological density fields for the cosmic microwave background radiation

    Full text link
    We present simulations of the Cosmic Microwave Background Radiation (CMBR) power spectrum for a class of mixed, non-Gaussian, primordial random fields. We assume a skew positive mixed model with adiabatic inflation perturbations plus additional isocurvature perturbations possibly produced by topological defects. The joint probability distribution used in this context is a weighted combination of Gaussian and non-Gaussian random fields, such as: P(delta) = (1-alpha)f_{1}(delta) + alpha*f_{2}(delta), where f_{1}(delta) is a Gaussian distribution, f_{2}(delta) is a non-Gaussian general distribution, and alpha is a scale dependent mixture parameter. Results from simulations of CMBR temperature and polarisation power spectra show a distinct signature for very small deviations (~ 0.1%) from a pure Gaussian field. We discuss the main properties of such mixed models as well, their predictions and suggestions on how to apply them to small scale CMBR observations. A reduced chi^2 test shows that the contribution of an isocurvature fluctuation field is not ruled out in actual CMB observations, even in WMAP first-year sky map.Comment: 28 pages, 13 PostScript figures, aas style. Accepted for publication in the ApJ (Feb 2004). Version accepted by the ApJ can be found in http://www.das.inpe.br/~alex/papers.html, just clicking in the paper's nam

    The VIRMOS-VLT Deep Survey

    Get PDF
    The aim of the VIRMOS VLT Deep Survey (VVDS) is to study of the evolution of galaxies, large scale structures and AGNs from a sample of more than 150,000 galaxies with measured redshifts in the range 0<z<5+. The VVDS will rely on the VIMOS and NIRMOS wide field multi-object spectrographs, which the VIRMOS consortium is delivering to ESO. Together, they offer unprecedented multiplex capability in the wavelength range 0.37-1.8microns, allowing for large surveys to be carried out. The VVDS has several main aspects: (1) a deep multi-color imaging survey over 18deg^2 of more than one million galaxies, (2) a "wide" spectroscopic survey with more than 130,000 redshifts measured for objects brighter than IAB=22.5 over 18deg^2, (3) a "deep" survey with 50,000 redshifts measured to IAB=24, (4) ultra-deep" surveys with several thousand redshifts measured to IAB=25, (5) multi-wavelength observations with the VLA and XMM.Comment: 5 pages including figures; to appear in Proc. of the ESO/ECF/STSCI "Deep Fields" workshop, Garching Oct 2000, (Publ: Springer

    Multifractal Scaling, Geometrical Diversity, and Hierarchical Structure in the Cool Interstellar Medium

    Get PDF
    Multifractal scaling (MFS) refers to structures that can be described as a collection of interwoven fractal subsets which exhibit power-law spatial scaling behavior with a range of scaling exponents (concentration, or singularity, strengths) and dimensions. The existence of MFS implies an underlying multiplicative (or hierarchical, or cascade) process. Panoramic column density images of several nearby star- forming cloud complexes, constructed from IRAS data and justified in an appendix, are shown to exhibit such multifractal scaling, which we interpret as indirect but quantitative evidence for nested hierarchical structure. The relation between the dimensions of the subsets and their concentration strengths (the "multifractal spectrum'') appears to satisfactorily order the observed regions in terms of the mixture of geometries present: strong point-like concentrations, line- like filaments or fronts, and space-filling diffuse structures. This multifractal spectrum is a global property of the regions studied, and does not rely on any operational definition of "clouds.'' The range of forms of the multifractal spectrum among the regions studied implies that the column density structures do not form a universality class, in contrast to indications for velocity and passive scalar fields in incompressible turbulence, providing another indication that the physics of highly compressible interstellar gas dynamics differs fundamentally from incompressible turbulence. (Abstract truncated)Comment: 27 pages, (LaTeX), 13 figures, 1 table, submitted to Astrophysical Journa
    corecore