43 research outputs found
Recommended from our members
PFHydro: A New Watershed-Scale Model for Post-Fire Runoff Simulation
Runoff increases after wildfires that burn vegetation and create a condition of soil-water repellence (SWR). A new post-fire watershed hydrological model, PFHydro, was created to explicitly simulate vegetation interception and SWR effects for four burn severity categories: high, medium, low severity and unburned. The model was applied to simulate post-fire runoff from the Upper Cache Creek Watershed in California, USA. Nash–Sutcliffe modeling efficiency (NSE) was used to assess model performance. The NSE was 0.80 and 0.88 for pre-fire water years (WY) 2000 and 2015, respectively. NSE was 0.88 and 0.93 for WYs 2016 (first year post-fire) and 2017 respectively. The simulated percentage of surface runoff in total runoff of WY 2016 was about six times that of pre-fire WY 2000 and three times that of WY 2015. The modeling results suggest that SWR is an important factor for post-fire runoff generation. The model was successful at simulating SWR behavior
A pragmatic harm reduction approach to manage a large outbreak of wound botulism in people who inject drugs, Scotland 2015
Abstract Background People who inject drugs (PWID) are at an increased risk of wound botulism, a potentially fatal acute paralytic illness. During the first 6Â months of 2015, a large outbreak of wound botulism was confirmed among PWID in Scotland, which resulted in the largest outbreak in Europe to date. Methods A multidisciplinary Incident Management Team (IMT) was convened to conduct an outbreak investigation, which consisted of enhanced surveillance of cases in order to characterise risk factors and identify potential sources of infection. Results Between the 24th of December 2014 and the 30th of May 2015, a total of 40 cases were reported across six regions in Scotland. The majority of the cases were male, over 30 and residents in Glasgow. All epidemiological evidence suggested a contaminated batch of heroin or cutting agent as the source of the outbreak. There are significant challenges associated with managing an outbreak among PWID, given their vulnerability and complex addiction needs. Thus, a pragmatic harm reduction approach was adopted which focused on reducing the risk of infection for those who continued to inject and limited consequences for those who got infected. Conclusions The management of this outbreak highlighted the importance and need for pragmatic harm reduction interventions which support the addiction needs of PWID during an outbreak of spore-forming bacteria. Given the scale of this outbreak, the experimental learning gained during this and similar outbreaks involving spore-forming bacteria in the UK was collated into national guidance to improve the management and investigation of future outbreaks among PWID
Microbial sulfate reduction and metal attenuation in pH 4 acid mine water
Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures
Mercury flux to sediments of Lake Tahoe, California-Nevada
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Water, Air, & Soil Pollution 210 (2010): 399-407, doi:10.1007/s11270-009-0262-y.We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California-Nevada: 2 and 15-20 µg/m2/yr in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5-10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the value of 3 typically seen worldwide. We offer plausible hypotheses to explain the high flux ratios, including (1) proportionally less photoreduction and evasion of Hg with the onset of cultural eutrophication and (2) a combination of enhanced regional oxidation of gaseous elemental Hg and transport of the resulting reactive gaseous Hg to the surface with nightly downslope flows of air. If either of these mechanisms is correct, it could lead to local/regional solutions to lessen the impact of globally increasing anthropogenic emissions of Hg on Lake Tahoe and other alpine ecosystems.Funding was provided by Miami University, EPA-STAR, the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, and the USGS
Recommended from our members
PFHydro: A New Watershed-Scale Model for Post-Fire Runoff Simulation
Runoff increases after wildfires that burn vegetation and create a condition of soil-water repellence (SWR). A new post-fire watershed hydrological model, PFHydro, was created to explicitly simulate vegetation interception and SWR effects for four burn severity categories: high, medium, low severity and unburned. The model was applied to simulate post-fire runoff from the Upper Cache Creek Watershed in California, USA. Nash–Sutcliffe modeling efficiency (NSE) was used to assess model performance. The NSE was 0.80 and 0.88 for pre-fire water years (WY) 2000 and 2015, respectively. NSE was 0.88 and 0.93 for WYs 2016 (first year post-fire) and 2017 respectively. The simulated percentage of surface runoff in total runoff of WY 2016 was about six times that of pre-fire WY 2000 and three times that of WY 2015. The modeling results suggest that SWR is an important factor for post-fire runoff generation. The model was successful at simulating SWR behavior