29 research outputs found

    EFFECTS OF TUNGSTATE ON THE GROWTH OF DESULFOVIBRIO-GIGAS NCIMB-9332 AND OTHER SULFATE-REDUCING BACTERIA WITH ETHANOL AS A SUBSTRATE

    No full text
    Growth of Desulfovibrio gigas NCIMB 9332 in mineral, vitamin-supplemented media with ethanol as substrate was strongly stimulated by the addition of tungstate (optimal level approximately 10(-7) M). At suboptimal tungstate concentrations, up to 1.0 mM acetaldehyde was detected in the culture supernatant and growth was slow. Omission of both tungstate and molybdate from the media prevented growth and ethanol utilization. Tung state-deprived cultures that were grown on lactate had much lower aldehyde dehydrogenase (benzylviologen as acceptor; BV-AlDH) levels than tungstate-supplemented cultures. These data suggest that tungstate is required for the synthesis of active BV-AlDH. The characteristics of the enzyme activities in cell-free extracts show that the BV-AlDH activity present in tungstate-supplemented cultures is not due to the recently characterized molybdenum-containing aldehyde dehydrogenase of D. gigas. Out of 13 other strains of ethanol-oxidizing, gram-negative, sulfate-reducing bacteria tested, most strains grew well with either tungstate or molybdate supplementation. In contrast to a recent report, good growth on ethanol of two D. baculatus (Desulfomicrobium) strains (DSM 1741 and DSM 1743) was observed.</p

    EFFECTS OF TUNGSTATE ON THE GROWTH OF DESULFOVIBRIO-GIGAS NCIMB-9332 AND OTHER SULFATE-REDUCING BACTERIA WITH ETHANOL AS A SUBSTRATE

    No full text
    Growth of Desulfovibrio gigas NCIMB 9332 in mineral, vitamin-supplemented media with ethanol as substrate was strongly stimulated by the addition of tungstate (optimal level approximately 10(-7) M). At suboptimal tungstate concentrations, up to 1.0 mM acetaldehyde was detected in the culture supernatant and growth was slow. Omission of both tungstate and molybdate from the media prevented growth and ethanol utilization. Tung state-deprived cultures that were grown on lactate had much lower aldehyde dehydrogenase (benzylviologen as acceptor; BV-AlDH) levels than tungstate-supplemented cultures. These data suggest that tungstate is required for the synthesis of active BV-AlDH. The characteristics of the enzyme activities in cell-free extracts show that the BV-AlDH activity present in tungstate-supplemented cultures is not due to the recently characterized molybdenum-containing aldehyde dehydrogenase of D. gigas. Out of 13 other strains of ethanol-oxidizing, gram-negative, sulfate-reducing bacteria tested, most strains grew well with either tungstate or molybdate supplementation. In contrast to a recent report, good growth on ethanol of two D. baculatus (Desulfomicrobium) strains (DSM 1741 and DSM 1743) was observed.</p

    PURIFICATION AND CHARACTERIZATION OF A BENZYLVIOLOGEN-LINKED, TUNGSTEN-CONTAINING ALDEHYDE OXIDOREDUCTASE FROM DESULFOVIBRIO-GIGAS

    No full text
    Desulfovibrio gigas NCIMB 9332 cells grown in ethanol-containing medium with 0.1 microM tungstate contained a benzylviologen-linked aldehyde oxidoreductase. The enzyme was purified to electrophoretic homogeneity and found to be a homodimer with a subunit M(r) of 62,000. It contained 0.68 +/- 0.08 W, 4.8 Fe, and 3.2 +/- 0.2 labile S per subunit. After acid iodine oxidation of the purified enzyme, a fluorescence spectrum typical for form A of molybdopterin was obtained. Acetaldehyde, propionaldehyde, and benzaldehyde were excellent substrates, with apparent Km values of 12.5, 10.8, and 20 microM, respectively. The natural electron acceptor is not yet known; benzylviologen was used as an artificial electron acceptor (apparent Km, 0.55 mM). The enzyme was activated by potassium ions and strongly inhibited by cyanide, arsenite, and iodoacetate. In the as-isolated enzyme, electron paramagnetic resonance studies readily detected W(V) as a complex signal with g values in the range of 1.84 to 1.97. The dithionite-reduced enzyme exhibited a broad signal at low temperature with g = 2.04 and 1.92; this is indicative of a [4Fe-4S]1+ cluster interacting with a second paramagnet, possibly the S = 1 system of W(IV). Until now W-containing aldehyde oxidoreductases had only been found in two Clostridium strains and two hyperthermophilic archaea. The D. gigas enzyme is the first example of such an enzyme in a gram-negative bacterium

    Electron-dense granules in Desulfovibrio gigas do not consist of inorganic triphosphate but of a glucose pentakis(diphosphate)

    No full text
    Under certain growth conditions the sulfate-reducing bacterium Desulfovibrio gigas forms electron-dense granules in the cells which had been claimed to consist of a magnesium triphosphate). We observed granules after cultivation in media with a low Fe2+ or NH4+ concentration and reinvestigated the nature of the electron-dense bodies. Energy-dispersive X-ray analysis of the granules in the cells showed that they contain large amounts of P, Mg, and K. Gel electrophoresis and chromatographic analyses of isolated granules which had been dissolved in 20 mM EDTA, however, revealed discrepancies with commercially available polyphosphates. P-31-NMR spectra also lacked the peaks in the -22-ppm region which are characteristic for inner phosphates of polyphosphates confirming that the phosphocompound as isolated from the electron-dense bodies of D. gigas did not consist of polyphosphates. Using multinuclear NMR spectroscopy we showed that the electron-dense bodies of D. gigas contained a novel metabolite which was identified as a-glucose 1,2,3,4,6-pentakis (diphosphate)
    corecore