30 research outputs found

    Malignant Catarrhal Fever Induced by Alcelaphine herpesvirus 1 Is Associated with Proliferation of CD8+ T Cells Supporting a Latent Infection

    Get PDF
    Alcelaphine herpesvirus 1 (AlHV-1), carried by wildebeest asymptomatically, causes malignant catarrhal fever (WD-MCF) when cross-species transmitted to a variety of susceptible species of the Artiodactyla order. Experimentally, WD-MCF can be induced in rabbits. The lesions observed are very similar to those described in natural host species. Here, we used the rabbit model and in vivo 5-Bromo-2′-Deoxyuridine (BrdU) incorporation to study WD-MCF pathogenesis. The results obtained can be summarized as follows. (i) AlHV-1 infection induces CD8+ T cell proliferation detectable as early as 15 days post-inoculation. (ii) While the viral load in peripheral blood mononuclear cells remains below the detection level during most of the incubation period, it increases drastically few days before death. At that time, at least 10% of CD8+ cells carry the viral genome; while CD11b+, IgM+ and CD4+ cells do not. (iii) RT-PCR analyses of mononuclear cells isolated from the spleen and the popliteal lymph node of infected rabbits revealed no expression of ORF25 and ORF9, low or no expression of ORF50, and high or no expression of ORF73. Based on these data, we propose a new model for the pathogenesis of WD-MCF. This model relies on proliferation of infected CD8+ cells supporting a predominantly latent infection

    Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo - in search of potential anti-epileptogenic strategies for temporal lobe epilepsy

    Get PDF
    Background: Previous studies in various rodent epilepsy models have suggested that mammalian target of rapamycin (mTOR) inhibition with rapamycin has anti-epileptogenic potential. Since treatment with rapamycin produces unwanted side effects, there is growing interest to study alternatives to rapamycin as anti-epileptogenic drugs. Therefore, we investigated curcumin, the main component of the natural spice turmeric. Curcumin is known to have anti-inflammatory and anti-oxidant effects and has been reported to inhibit the mTOR pathway. These properties make it a potential anti-epileptogenic compound and an alternative for rapamycin.Methods: To study the anti-epileptogenic potential of curcumin compared to rapamycin, we first studied the effects of both compounds on mTOR activation, inflammation, and oxidative stress in vitro, using cell cultures of human fetal astrocytes and the neuronal cell line SH-SY5Y. Next, we investigated the effects of rapamycin and intracerebrally applied curcumin on status epilepticus (SE)—induced inflammation and oxidative stress in hippocampal tissue, during early stages of epileptogenesis in the post-electrical SE rat model for temporal lobe epilepsy (TLE).Results: Rapamycin, but not curcumin, suppressed mTOR activation in cultured astrocytes. Instead, curcumin suppressed the mitogen-activated protein kinase (MAPK) pathway. Quantitative real-time PCR analysis revealed that curcumin, but not rapamycin, reduced the levels of inflammatory markers IL-6 and COX-2 in cultured astrocytes that were challenged with IL-1β. In SH-SY5Y cells, curcumin reduced reactive oxygen species (ROS) levels, suggesting anti-oxidant effects. In the post-SE rat model, however, treatment with rapamycin or curcumin did not suppress the expression of inflammatory and oxidative stress markers 1 week after SE.Conclusions: These results indicate anti-inflammatory and anti-oxidant properties of curcumin, but not rapamycin, in vitro. Intracerebrally applied curcumin modified the MAPK pathway in vivo at 1 week after SE but failed to produce anti-inflammatory or anti-oxidant effects. Future studies should be directed to increasing the bioavailability of curcumin (or related compounds) in the brain to assess its anti-epileptogenic potential in vivo

    Clinical evaluation of analytical variations in serum creatinine measurements: why laboratories should abandon Jaffe techniques

    Get PDF
    Contains fulltext : 110568.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Non-equivalence in serum creatinine (SCr) measurements across Dutch laboratories and the consequences hereof on chronic kidney disease (CKD) staging were examined. METHODS: National data from the Dutch annual external quality organization of 2009 were used. 144 participating laboratories examined 11 pairs of commutable, value-assigned SCr specimens in the range 52-262 mumol/L, using Jaffe or enzymatic techniques. Regression equations were created for each participating laboratory (by regressing values as measured by participating laboratories on the target values of the samples sent by the external quality organization); area under the curves were examined and used to rank laboratories. The 10th and 90th percentile regression equation were selected for each technique separately. To evaluate the impact of the variability in SCr measurements and its eventual clinical consequences in a real patient population, we used a cohort of 82424 patients aged 19-106 years. The SCr measurements of these 82424 patients were introduced in the 10th and 90th percentile regression equations. The newly calculated SCr values were used to calculate an estimated glomerular filtration rate (eGFR) using the 4-variable Isotope Dilution Mass Spectrometry traceable Modification of Diet in Renal Disease formula. Differences in CKD staging were examined, comparing the stratification outcomes for Jaffe and enzymatic SCr techniques. RESULTS: Jaffe techniques overestimated SCr: 21%, 12%, 10% for SCr target values 52, 73 and 94 mumol/L, respectively. For enzymatic assay these values were 0%, -1%, -2%, respectively. eGFR using the MDRD formula and SCr measured by Jaffe techniques, staged patients in a lower CKD category. Downgrading to a lower CKD stage occurred in 1-42%, 2-37% and 12-78.9% of patients for the 10th and 90th percentile laboratories respectively in CKD categories 45-60, 60-90 and >90 ml/min/1.73 m2. Using enzymatic techniques, downgrading occurred only in 2-4% of patients. CONCLUSIONS: Enzymatic techniques lead to less variability in SCr measurements than Jaffe techniques, and therefore result in more accurate staging of CKD. Therefore the specific enzymatic techniques are preferably used in clinical practice in order to generate more reliable GFR estimates
    corecore