5,754 research outputs found

    Prospective evaluation of BDProbeTec strand displacement amplification (SDA) system for diagnosis of tuberculosis in non-respiratory and respiratory samples.

    Get PDF
    Nucleic acid amplification techniques (NAATs) have been demonstrated to make significant improvements in the diagnosis of tuberculosis (TB), particularly in the time to diagnosis and the diagnosis of smear-negative TB. The BD ProbeTec strand displacement amplification (SDA) system for the diagnosis of pulmonary and non-pulmonary tuberculosis was evaluated. A total of 689 samples were analysed from patients with clinically suspected TB. Compared with culture, the sensitivity and specificity for pulmonary samples were 98 and 89 %, and against final clinical diagnosis 93 and 92 %, respectively. This assay has undergone limited evaluation for non-respiratory samples and so 331 non-respiratory samples were tested, identifying those specimens that were likely to yield a useful result. These were CSF (n = 104), fine needle aspirates (n = 64) and pus (n = 41). Pleural fluid (n = 47) was identified as a poor specimen. A concern in using the SDA assay was that low-positive samples were difficult to interpret; 7.8 % of specimens fell into this category. Indeed, 64 % of the discrepant results, when compared to final clinical diagnosis, could be assigned as low-positive samples. Specimen type did not predict likelihood of a sample being in the low-positive zone. Although the manufacturers do not describe the concept of a low-positive zone, we have found that it aids clinical diagnosis

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    A cost effectiveness and capacity analysis for the introduction of universal rotavirus vaccination in Kenya : comparison between Rotarix and RotaTeq vaccines

    Get PDF
    Background Diarrhoea is an important cause of death in the developing world, and rotavirus is the single most important cause of diarrhoea associated mortality. Two vaccines (Rotarix and RotaTeq) are available to prevent rotavirus disease. This analysis was undertaken to aid the decision in Kenya as to which vaccine to choose when introducing rotavirus vaccination. Methods Cost-effectiveness modelling, using national and sentinel surveillance data, and an impact assessment on the cold chain. Results The median estimated incidence of rotavirus disease in Kenya was 3015 outpatient visits, 279 hospitalisations and 65 deaths per 100,000 children under five years of age per year. Cumulated over the first five years of life vaccination was predicted to prevent 34% of the outpatient visits, 31% of the hospitalizations and 42% of the deaths. The estimated prevented costs accumulated over five years totalled US1,782,761(directandindirectcosts)withanassociated48,585DALYs.FromasocietalperspectiveRotarixhadacosteffectivenessratioofUS1,782,761 (direct and indirect costs) with an associated 48,585 DALYs. From a societal perspective Rotarix had a cost-effectiveness ratio of US142 per DALY (US5forthefullcourseoftwodoses)andRotaTeqUS5 for the full course of two doses) and RotaTeq US288 per DALY ($10.5 for the full course of three doses). RotaTeq will have a bigger impact on the cold chain compared to Rotarix. Conclusion Vaccination against rotavirus disease is cost-effective for Kenya irrespective of the vaccine. Of the two vaccines Rotarix was the preferred choice due to a better cost-effectiveness ratio, the presence of a vaccine vial monitor, the requirement of fewer doses and less storage space, and proven thermo-stability

    Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    Get PDF
    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs

    Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals

    Get PDF
    Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice

    Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Get PDF
    Background: Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results: Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion: We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution
    corecore