266 research outputs found

    Identification of tipping years and shifts in mesozooplankton community structure using multivariate analyses: a long-term study in southern North Sea

    Get PDF
    Abstract Many previous studies on the changes in zooplankton communities considered only subsets of the total community. In this study, we investigated the temporal dynamics of the mesozooplankton community structure, considering all taxa (holo- and meroplankton) sampled over the last five decades at Helgoland Roads. We identified two tipping years. The first one occurred in 1983, which is consistent with previous studies conducted on copepods. The second shift, even more pronounced, took place in the mid-2000s. During the first shift, most taxa significantly increased in abundance and kept high densities until the end of the 1990s. Then, we observed in the mid-2000s a sharp decrease in community diversity and abundances of almost all taxa. One of the aims of the study was to test the robustness depending on the choice of taxa. To test this, we selected different subsets of the total zooplankton community, both randomly as well as based on functionality. We observed very similar trends over time for all groups, showing the complete community experienced the same changes. However, the timing of the tipping years depended on the organisms considered. These results highlight that the observed changes in the planktonic community are surprisingly robust and visible in most planktonic organisms.</jats:p

    Major shift in the copepod functional community of the southern North Sea and potential environmental drivers

    Get PDF
    Abstract Copepods form the bulk of secondary production in marine ecosystems and are a major resource for higher trophic levels. Copepods are highly sensitive to environmental changes as they are ectotherms with a short life span whose metabolism and development depend on abiotic conditions. In turn, changes in their functional structure (i.e. functional trait composition) can have impacts on ecosystems. We examined changes in the copepod functional community in the North Sea over the past five decades, using a trait-based approach. We observed a shift around 1986–1988: the copepod community was initially dominated by larger herbivores, with a long development time, diapause ability, and highest abundances in summer. This community changed abruptly after 1986–1988, to a dominance of smaller carnivore taxa, with shorter development times, less ability to enter diapause, and that display higher abundances in autumn. This rapid reorganization could be driven by higher water temperatures, lower dinoflagellate abundances, and lower nutrient concentrations. These changes could impact adjacent trophic levels, such as phytoplankton on which several species graze or fish larvae, leading to a mismatch situation with consequences for fish recruitment. Our results emphasize the impact that global and regional changes could have on coastal ecosystems through the role played by copepods.</jats:p

    Response of the meso- and macro-zooplankton community to long-term environmental changes in the southern North Sea

    Get PDF
    Abstract The North Sea (NS) is changing rapidly. Temporal variations in fishing intensity and eutrophic conditions, along with the ongoing impact of climate change, act in synergy resulting in modifications in marine communities. Although zooplankton has been extensively investigated, studies often ignore the large-sized meso- and macro-zooplankton (&amp;gt;500 µm), including holoplankton and meroplankton taxa. Here, we examined changes in abundances and community structure of these organisms between 1975 and 2018, using univariate and multivariate analysis, at different taxonomic levels. Abrupt changes in the abundances of (sub)communities occurred during different time periods and resulted in a significant restructuration of the entire community in 2006. These changes were consistent with the regime shifts reported in the NS and were a consequence of the environmental pressures on the whole community or on specific subcommunities. In the long term, the community shifted from higher abundances of hydrozoans and holoplankton taxa to an increasing abundance of decapods. Furthermore, we reveal the environmental variables that most explain the variability in the community dynamics, highlighting the importance of temperature and top-down processes. Our study underlines the relevance of investigations at different taxonomic levels, which elucidates how distinct responses to environmental changes ultimately shape the entire community structure.</jats:p

    Higher temperature, increased CO2, and changing nutrient ratios alter the carbon metabolism and induce oxidative stress in a cosmopolitan diatom

    Get PDF
    Phytoplankton are responsible for about 90% of the oceanic primary production, largely supporting marine food webs, and actively contributing to the biogeochemical cycling of carbon. Yet, increasing temperature and pCO2, along with higher dissolved nitrogen: phosphorus ratios in coastal waters are likely to impact phytoplankton physiology, especially in terms of photosynthetic rate, respiration, and dissolved organic carbon (DOC) production. Here, we conducted a full-factorial experiment to identify the individual and combined effects of temperature, pCO2, and N : P ratio on the antioxidant capacity and carbon metabolism of the diatom Phaeodactylum tricornutum. Our results demonstrate that, among these three drivers, temperature is the most influential factor on the physiology of this species, with warming causing oxidative stress and lower activity of antioxidant enzymes. Furthermore, the photosynthetic rate was higher under warmer conditions and higher pCO2, and, together with a lower dark respiration rate and higher DOC exudation, generated cells with lower carbon content. An enhanced oceanic CO2 uptake and an overall stimulated microbial loop benefiting from higher DOC exudation are potential longer-term consequences of rising temperatures, elevated pCO2 as well as shifted dissolved N : P ratios

    In situ cell division and mortality rates of SAR11, SAR86, Bacteroidetes, and Aurantivirga during phytoplankton blooms reveal differences in population controls

    Get PDF
    Net growth of microbial populations, i.e., changes in abundances over time, can be studied using 16S rRNA fluorescence in situ hybridization (FISH). However, this approach does not differentiate between mortality and cell division rates. We used FISH-based image cytometry in combination with dilution culture experiments to study net growth, cell division, and mortality rates of four bacterial taxa over two distinct phytoplankton blooms: the oligotrophs SAR11 and SAR86, the copiotrophic phylum Bacteroidetes, and its genus Aurantivirga. Cell volumes, ribosome content, and frequency of dividing cells (FDC) co-varied over time. Among the three, FDC was the most suitable predictor to calculate the cell division rates for the selected taxa. The FDC-derived cell division rates for SAR86 of up to 0.8 d-1 and Aurantivirga of up to 1.9 d-1 differed, as expected for oligotrophs and copiotrophs. Surprisingly, SAR11 also reached high cell division rates of up to 1.9 d-1, even before the onset of phytoplankton blooms. For all four taxonomic groups, the abundance-derived net growth (-0.6 to 0.5 d-1) was about an order of magnitude lower than the cell division rates. Consequently, mortality rates were comparably high to cell division rates, indicating that about 90% of bacterial production is recycled without apparent time lag within one day. Our study shows that determining taxon-specific cell division rates complements omics-based tools and provides unprecedented clues on individual bacterial growth strategies including bottom-up and top-down controls

    Scheme for generating entangled states of two field modes in a cavity

    Full text link
    This paper considers a two-level atom interacting with two cavity modes with equal frequencies. Applying a unitary transformation, the system reduces to the analytically solvable Jaynes-Cummings model. For some particular field states, coherent and squeezed states, the transformation between the two bare basis's, related by the unitary transformation, becomes particularly simple. It is shown how to generate, the highly non-classical, entangled coherent states of the two modes, both in the zero and large detuning cases. An advantage with the zero detuning case is that the preparation is deterministic and no atomic measurement is needed. For the large detuning situation a measurement is required, leaving the field in either of two orthogonal entangled coherent states.Comment: Accepted in J. Mod. Opt.; 12 pages; Replaced with revised version. Extended discussion of experimental realizations, earlier studies in the field and on the frequency dependence in the adiabatic eliminatio

    Personality preference influences medical student use of specific computer-aided instruction (CAI)

    Get PDF
    BACKGROUND: The objective of this study was to test the hypothesis that personality preference, which can be related to learning style, influences individual utilization of CAI applications developed specifically for the undergraduate medical curriculum. METHODS: Personality preferences of students were obtained using the Myers-Briggs Type Indicator (MBTI) test. CAI utilization for individual students was collected from entry logs for two different web-based applications (a discussion forum and a tutorial) used in the basic science course on human anatomy. Individual login data were sorted by personality preference and the data statistically analyzed by 2-way mixed ANOVA and correlation. RESULTS: There was a wide discrepancy in the level and pattern of student use of both CAI. Although individual use of both CAI was positively correlated irrespective of MBTI preference, students with a "Sensing" preference tended to use both CAI applications more than the "iNtuitives". Differences in the level of use of these CAI applications (i.e., higher use of discussion forum vs. a tutorial) were also found for the "Perceiving/Judging" dimension. CONCLUSION: We conclude that personality/learning preferences of individual students influence their use of CAI in the medical curriculum

    Vicarious Learning from Human Models in Monkeys

    Get PDF
    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object–reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models

    Meiosis-Specific Stable Binding of Augmin to Acentrosomal Spindle Poles Promotes Biased Microtubule Assembly in Oocytes

    Get PDF
    In the oocytes of many animals including humans, the meiotic spindle assembles without centrosomes. It is still unclear how multiple pathways contribute to spindle microtubule assembly, and whether they are regulated differently in mitosis and meiosis. Augmin is a γ-tubulin recruiting complex which "amplifies" spindle microtubules by generating new microtubules along existing ones in mitosis. Here we show that in Drosophila melanogaster oocytes Augmin is dispensable for chromatin-driven assembly of bulk spindle microtubules, but is required for full microtubule assembly near the poles. The level of Augmin accumulated at spindle poles is well correlated with the degree of chromosome congression. Fluorescence recovery after photobleaching shows that Augmin stably associates with the polar regions of the spindle in oocytes, unlike in mitotic cells where it transiently and uniformly associates with the metaphase spindle. This stable association is enhanced by γ-tubulin and the kinesin-14 Ncd. Therefore, we suggest that meiosis-specific regulation of Augmin compensates for the lack of centrosomes in oocytes by actively biasing sites of microtubule generation within the spindle
    • …
    corecore