4,141 research outputs found
Prospecting for new group A streptococcal vaccine candidates
Background & objectives: Most group A streptococcal (GAS) vaccine strategies focused on the surface M protein of the GAS. However, vaccine based on M protein have some drawbacks. In the present study, we used two approaches to identify new proteins and peptides that may have utility as vaccine candidates. Methods: A whole gel elution procedure was used to separate GAS surface antigens into 9 size fractionated pools. Mice were vaccinated with each pool and antibody titre, opsonic ability and protective capacity measured. In an alternative approach BioInformatics was used to identify putative GAS surface proteins. Peptides from within these proteins were then selected on the basis of predicted antigenicity or location. These peptides were conjugated to keyhole lymphocyanin (KLH) and immunogenicity measured in a mouse model. Results: One pool of GAS surface proteins (approximately 29kDa) induced antibodies that were both opsonic and potentially protective. Immunoflourescent microscopy demonstrated that these antibodies bound to the surface of M1 GAS. Amino acid sequencing subsequently identified superoxide dismutase as the major antigen in this pool. A BioInformatic search of the M1 GAS genome and subsequent analysis identified several peptides that fulfilled criteria as potential vaccine candidates. Each peptide when conjugated to KLH was able to induce a strong antibody response. Interpretation & conclusion: Several new antigens were identified that may have potential as vaccine targets. A future GAS vaccine may have multiple peptide epitopes, providing protection against multiple GAS strains
Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes
In almost every ecosystem, ants (Hymenoptera: Formicidae) are the dominant terrestrial invertebrate group. Their functional value was highlighted by Wilson (1987) who famously declared that invertebrates are the âlittle things that run the world.â However, while it is generally accepted that ants fulfil important functions, few studies have tested these assumptions and demonstrated what happens in their absence. We report on a novel largeâscale field experiment in undisturbed savanna habitat where we examined how ants influence the abundance of other invertebrate taxa in the system, and affect the key processes of decomposition and herbivory. Our experiment demonstrated that ants suppressed the abundance and activity of beetles, millipedes, and termites, and also influenced decomposition rates and levels of herbivory. Our study is the first to show that topâdown control of termites by ants can have important ecosystem consequences. Further studies are needed to elucidate the effects ant communities have on other aspects of the ecosystem (e.g., soils, nutrient cycling, the microbial community) and how their relative importance for ecosystem function varies among ecosystem types (e.g., savanna vs. forest)
Spotting the diffusion of New Psychoactive Substances over the Internet
Online availability and diffusion of New Psychoactive Substances (NPS)
represent an emerging threat to healthcare systems. In this work, we analyse
drugs forums, online shops, and Twitter. By mining the data from these sources,
it is possible to understand the dynamics of drugs diffusion and their
endorsement, as well as timely detecting new substances. We propose a set of
visual analytics tools to support analysts in tackling NPS spreading and
provide a better insight about drugs market and analysis
A review of the electrical properties of semiconductor nanowires: Insights gained from terahertz conductivity spectroscopy
Accurately measuring and controlling the electrical properties of semiconductor nanowires is of paramount importance in the development of novel nanowire-based devices. In light of this, terahertz (THz) conductivity spectroscopy has emerged as an ideal non-contact technique for probing nanowire electrical conductivity and is showing tremendous value in the targeted development of nanowire devices. THz spectroscopic measurements of nanowires enable charge carrier lifetimes, mobilities, dopant concentrations and surface recombination velocities to be measured with high accuracy and high throughput in a contact-free fashion. This review spans seminal and recent studies of the electronic properties of nanowires using THz spectroscopy. A didactic description of THz time-domain spectroscopy, optical pumpâTHz probe spectroscopy, and their application to nanowires is included. We review a variety of technologically important nanowire materials, including GaAs, InAs, InP, GaN and InN nanowires, Si and Ge nanowires, ZnO nanowires, nanowire heterostructures, doped nanowires and modulation-doped nanowires. Finally, we discuss how THz measurements are guiding the development of nanowire-based devices, with the example of single-nanowire photoconductive THz receivers.The authors gratefully acknowledge EPSRC (UK) for research funding. H J Joyce gratefully acknowledges the Royal Commission for the Exhibition of 1851 for her research fellowship.This is the final version of the article. It first appeared from IOP via https://doi.org/10.1088/0268-1242/31/10/10300
Taking Pride in STEMM by taking STEMM to Pride!
This is the final version. Available on open access from Portland Press via the DOI in this record.In the hopes of inspiring other science communicators to engage with the LGBTQ+ community, we highlight some of the barriers to inclusion in STEMM faced by this community and summarize the activities we exhibited on our "Proud to be a Scientist" stall at Exeter Pride 2024. This allowed us to reach traditionally excluded and low science-capital audiences and promote representation in queer spaces
- âŠ