4,171 research outputs found

    A practical regularization technique for modified nodal analysis in large-scale time-domain circuit simulation

    Get PDF
    Fast full-chip time-domain simulation calls for advanced numerical integration techniques with capability to handle the systems with (tens of) millions of variables resulting from the modified nodal analysis (MNA). General MNA formulation, however, leads to a differential algebraic equation (DAE) system with singular coefficient matrix, for which most of explicit methods, which usually offer better scalability than implicit methods, are not readily available. In this paper, we develop a practical two-stage strategy to remove the singularity in MNA equations of large-scale circuit networks. A topological index reduction is first applied to reduce the DAE index of the MNA equation to one. The index-1 system is then fed into a systematic process to eliminate excess variables in one run, which leads to a nonsingular system. The whole regularization process is devised with emphasis on exact equivalence, low complexity, and sparsity preservation, and is thus well suited to handle extremely large circuits. © 2012 IEEE.published_or_final_versio

    Development of packaging and electrical interfacing for electrical vehicles

    Get PDF
    Author name used in this publication: K. W. E. ChengAuthor name used in this publication: S. L. HoRefereed conference paper2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Multiobjective path planning on uneven terrains based on NAMOA*

    Get PDF
    2015-2016 > Academic research: refereed > Refereed conference paperAccepted ManuscriptPublishe

    A constraint-aware heuristic path planner for finding energy-efficient paths on uneven terrains

    Get PDF
    2014-2015 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    An Indexing Framework for Queries on Probabilistic Graphs

    Get PDF
    postprin

    DOCS: Domain-Aware Crowdsourcing System

    Get PDF
    published_or_final_versio

    Rapid replanning of energy-efficient paths for navigation on uneven terrains

    Get PDF
    2015-2016 > Academic research: refereed > Refereed conference paperAccepted ManuscriptPublishe

    Effects of correlation-based VM allocation criteria to cloud data centers

    Get PDF
    2016-2017 > Academic research: refereed > Refereed conference paper201804_a bcmapreprint_postprin

    Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char

    Get PDF
    Microwave pyrolysis was performed on waste engine oil pre-mixed with different amounts of metallic-char catalyst produced previously from a similar microwave pyrolysis process. The metallic-char catalyst was first prepared by pretreatment with calcination followed by analyses to determine its various properties. The heating characteristics of the mixture of waste oil and metallic-char during the pyrolysis were investigated, and the catalytic influence of the metallic-char on the yield and characteristics of the pyrolysis products are discussed with emphasis on the composition of oil and gaseous products. The metallic-char, detected to have a porous structure and high surface area (124 m2/g), showed high thermal stability in a N2 atmosphere and it was also found to have phases of metals and metal oxides attached or adsorbed onto the char, representing a potentially suitable catalyst to be used in pyrolysis cracking process. The metallic-char initially acted as an adsorptive-support to adsorb metals, metal oxides and waste oil. Then, the char became a microwave absorbent that absorbed microwave energy and heated up to a high temperature in a short time and it was found to generate arcing and sparks during microwave pyrolysis of the waste oil, resulting in the formation of hot spots (high temperature sites with temperature up to 650 °C) within the reactor under the influence of microwave heating. The presence of this high temperature metallic-char, the amounts of which are likely to increase when increasing amounts of metallic-char were added to the waste oil (5, 10, and 20 wt% of the amount of waste oil added to the reactor), had provided a reducing chemical environment in which the metallic-char acted as an intermediate reductant to reduce the adsorbed metals or metal oxides into metallic states, which then functioned as a catalyst to provide more reaction sites that enhanced the cracking and heterogeneous reactions that occurred during the pyrolysis to convert the waste oil to produce higher yields of light hydrocarbons, H2 and CO gases in the pyrolysis products, recording a yield of up to 74 wt% of light C5–C10 hydrocarbons and 42 vol% of H2 and CO gases. The catalytic microwave pyrolysis produced 65–85 wt% yield of pyrolysis-oil containing C5–C20 hydrocarbons that can potentially be upgraded to produce transport-grade fuels. In addition, the recovered pyrolysis-gases (up to 33 wt%) were dominated by aliphatic hydrocarbons (up to 78 vol% of C1–C6 hydrocarbons) and significant amounts of valuable syngas (up to 42 vol% of H2 and CO in total) with low heating values (LHV) ranging from 4.7 to 5.5 MJ/m3, indicating that the pyrolysis-gases could also be used as a gaseous fuel or upgraded to produce more hydrogen as a second-generation fuel. The results indicate that the metallic-char shows advantages for use as a catalyst in microwave pyrolysis treatment of problematic waste oils. [Graphical abstract - see article]The authors acknowledges the financial support by the Ministry of Science, Technology, and Innovation Malaysia (MOSTI), Ministry of Higher Education Malaysia (MOHE), and University Malaysia Terengganu for the conduct of the research under the E-Science fund (UMT/RMC/SF/13/52072(5), Vot No: 52072), the Fundamental Research Grant Scheme (Project No: FRGS/1/2013/TK05/UMT/02/2, Vot No: 59296), and the Research Acculturation Grant Scheme (Project No: RAGS/2012/UMT/TK07/3, Vot No: 57085).This is the author accepted manuscript. The final version is available from [publisher] via http://dx.doi.org/10.1016/j.apcatb.2015.04.01

    A relaxation scheme for TSP-based 3D printing path optimizer

    Get PDF
    2016-2017 > Academic research: refereed > Refereed conference paper201804_a bcmaAccepted ManuscriptPublishe
    corecore