238 research outputs found
Recommended from our members
Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols.
Heterogeneous ice nucleation in the atmosphere regulates cloud properties, such as phase (ice versus liquid) and lifetime. Aerosol particles of marine origin are relevant ice nucleating particle sources when marine aerosol layers are lifted over mountainous terrain and in higher latitude ocean boundary layers, distant from terrestrial aerosol sources. Among many particle compositions associated with ice nucleation by sea spray aerosols are highly saturated fatty acids. Previous studies have not demonstrated their ability to freeze dilute water droplets. This study investigates ice nucleation by monolayers at the surface of supercooled droplets and as crystalline particles at temperatures exceeding the threshold for homogeneous freezing. Results show the poor efficiency of long chain fatty acid (C16, C18) monolayers in templating freezing of pure water droplets and seawater subphase to temperatures of at least -30 °C, consistent with theory. This contrasts with freezing of fatty alcohols (C22 used here) at nearly 20 °C warmer. Evaporation of μL-sized droplets to promote structural compression of a C19 acid monolayer did not favor warmer ice formation of drops. Heterogeneous ice nucleation occurred for nL-sized droplets condensed on 5 to 100 μm crystalline particles of fatty acid (C12 to C20) at a range of temperatures below -28 °C. These experiments suggest that fatty acids nucleate ice at warmer than -36 °C only when the crystalline phase is present. Rough estimates of ice active site densities are consistent with those of marine aerosols, but require knowledge of the proportion of surface area comprised of fatty acids for application
Lablab purpureus—A Crop Lost for Africa?
In recent years, so-called ‘lost crops’ have been appraised in a number of reviews, among them Lablab purpureus in the context of African vegetable species. This crop cannot truly be considered ‘lost’ because worldwide more than 150 common names are applied to it. Based on a comprehensive literature review, this paper aims to put forward four theses, (i) Lablab is one of the most diverse domesticated legume species and has multiple uses. Although its largest agro-morphological diversity occurs in South Asia, its origin appears to be Africa. (ii) Crop improvement in South Asia is based on limited genetic diversity. (iii) The restricted research and development performed in Africa focuses either on improving forage or soil properties mostly through one popular cultivar, Rongai, while the available diversity of lablab in Africa might be under threat of genetic erosion. (iv) Lablab is better adapted to drought than common beans (Phaseolus vulgaris) or cowpea (Vigna unguiculata), both of which have been preferred to lablab in African agricultural production systems. Lablab might offer comparable opportunities for African agriculture in the view of global change. Its wide potential for adaptation throughout eastern and southern Africa is shown with a GIS (geographic information systems) approach
Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina
The bark of Anadenanthera peregrina (L.) Speg and Anadenanthera colubrina (Vell.) Brenan
were characterized in relation to anatomical and chemical features. The barks were
similar and included a thin conducting phloem, a largely dilated and sclerified non-conducting
phloem, and a rhyridome with periderms with thin phellem interspersed by cortical tissues.
Only small differences between species were observed that cannot be used alone for
taxonomic purposes. The summative chemical composition of A. peregrina and A. colubrina
was respectively: 8.2% and 7.7% ash; 28.8% and 29.3% extractives; 2.4% and 2.6%
suberin; and 18.9% lignin. The monosaccharide composition showed the predominance of
glucose (on average 82% of total neutral sugars) and of xylose (9%). The ethanol-water
extracts of A. peregrina and A. colubrina barks included a high content of phenolics, respectively:
total phenolics 583 and 682 mg GAE/g extract; 148 and 445 mg CE/g extract; tannins
587 and 98 mg CE/g extract. The antioxidant activity was 238 and 269 mg Trolox/g extract.
The barks of the Anadenanthera species are a potential source of polar extractives that will
represent an important valorization and therefore contribute to improve the overall economic
potential and sustainability of A. peregrina and A. colubrinainfo:eu-repo/semantics/publishedVersio
Supercritical phase inversion of starch-poly(e-caprolactone) for tissue engineering applications
In this work, a starch-based polymer, namely a blend of starch-poly(ε-caprolactone) was processed by supercritical assisted phase inversion process. This processing technique has been proposed for the development of 3D structures with potential applications in tissue engineering applications, as scaffolds. The use of carbon dioxide as non-solvent in the phase inversion process leads to the formation of a porous and interconnected structure, dry and free of any residual solvent. Different processing conditions such as pressure (from 80 up to 150 bar) and temperature (45 and 55°C) were studied and the effect on the morphological features of the scaffolds was evaluated by scanning electron microscopy and micro-computed tomography. The mechanical properties of the SPCL scaffolds prepared were also studied. Additionally, in this work, the in vitro biological performance of the scaffolds was studied. Cell adhesion and morphology, viability and proliferation was assessed and the results suggest that the materials prepared are allow cell attachment and promote cell proliferation having thus potential to be used in some for biomedical applications.Ana Rita C. Duarte is grateful for financial support from Fundacao para a Ciencia e Tecnologia through the grant SFRH/BPD/34994/2007
Multiple Phenotypes in Adult Mice following Inactivation of the Coxsackievirus and Adenovirus Receptor (Car) Gene
To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo
Tuning the GENIE Pion Production Model with MINERvA Data
Faced with unresolved tensions between neutrino interaction measurements at
few-GeV neutrino energies, current experiments are forced to accept large
systematic uncertainties to cover discrepancies between their data and model
predictions. In this paper, the widely used pion production model in GENIE is
compared to four MINERvA charged current pion production measurements using
NUISANCE. Tunings, ie, adjustments of model parameters, to help match GENIE to
MINERvA and older bubble chamber data are presented here. We find that
scattering off nuclear targets as measured in MINERvA is not in good agreement
with scattering off nucleon (hydrogen or deuterium) targets in the bubble
chamber data. An additional ad hoc correction for the low- region, where
collective effects are expected to be large, is also presented. While these
tunings and corrections improve the agreement of GENIE with the data, the
modeling is imperfect. The development of these tunings within the NUISANCE
frameworkallows for straightforward extensions to other neutrino event
generators and models, and allows omitting and including new data sets as they
become available
Development of a Humanized Antibody with High Therapeutic Potential against Dengue Virus Type 2
Dengue virus (DENV) infection remains a serious health threat despite the availability of supportive care in modern medicine. Monoclonal antibodies (mAbs) of DENV would be powerful research tools for antiviral development, diagnosis and pathological investigations. Here we described generation and characterization of seventeen mAbs with high reactivity for E protein of DENV. Four of these mAbs showed high neutralizing activity against DENV-2 infection in mice. The monoclonal antibody mAb DB32-6 showed the strongest neutralizing activity against diverse DENV-2 and protected DENV-2-infected mice against mortality in therapeutic models. We identified neutralizing epitopes of DENV located at residues K310 and E311 of viral envelope protein domain III (E-DIII) through the combination of biological and molecular strategies. Comparing the strong neutralizing activity of mAbs targeting A-strand with mAbs targeting lateral ridge, we found that epitopes located in A-strand induced stronger neutralizing activity than those located on the lateral ridge. DB32-6 humanized version was successfully developed. Humanized DB32-6 variant retained neutralizing activity and prevented DENV infection. Understanding the epitope-based antibody-mediated neutralization is crucial to controlling dengue infection. Additionally, this study also introduces a novel humanized mAb as a candidate for therapy of dengue patients
Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh
<p>Abstract</p> <p>Background</p> <p>Chronic arsenic exposure has been shown to cause liver damage. However, serum hepatic enzyme activity as recognized on liver function tests (LFTs) showing a dose-response relationship with arsenic exposure has not yet been clearly documented. The aim of our study was to investigate the dose-response relationship between arsenic exposure and major serum enzyme marker activity associated with LFTs in the population living in arsenic-endemic areas in Bangladesh.</p> <p>Methods</p> <p>A total of 200 residents living in arsenic-endemic areas in Bangladesh were selected as study subjects. Arsenic concentrations in the drinking water, hair and nails were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The study subjects were stratified into quartile groups as follows, based on concentrations of arsenic in the drinking water, as well as in subjects' hair and nails: lowest, low, medium and high. The serum hepatic enzyme activities of alkaline phosphatase (ALP), aspartate transaminase (AST) and alanine transaminase (ALT) were then assayed.</p> <p>Results</p> <p>Arsenic concentrations in the subjects' hair and nails were positively correlated with arsenic levels in the drinking water. As regards the exposure-response relationship with arsenic in the drinking water, the respective activities of ALP, AST and ALT were found to be significantly increased in the high-exposure groups compared to the lowest-exposure groups before and after adjustments were made for different covariates. With internal exposure markers (arsenic in hair and nails), the ALP, AST and ALT activity profiles assumed a similar shape of dose-response relationship, with very few differences seen in the higher groups compared to the lowest group, most likely due to the temporalities of exposure metrics.</p> <p>Conclusions</p> <p>The present study demonstrated that arsenic concentrations in the drinking water were strongly correlated with arsenic concentrations in the subjects' hair and nails. Further, this study revealed a novel exposure- and dose- response relationship between arsenic exposure metrics and serum hepatic enzyme activity. Elevated serum hepatic enzyme activities in the higher exposure gradients provided new insights into arsenic-induced liver toxicity that might be helpful for the early prognosis of arsenic-induced liver diseases.</p
- …