7 research outputs found

    Free Radical Exposure Creates Paler Carotenoid-Based Ornaments: A Possible Interaction in the Expression of Black and Red Traits

    Get PDF
    Oxidative stress could be a key selective force shaping the expression of colored traits produced by the primary animal pigments in integuments: carotenoids and melanins. However, the impact of oxidative stress on melanic ornaments has only recently been explored, whereas its role in the expression of carotenoid-based traits is not fully understood. An interesting study case is that of those animal species simultaneously expressing both kinds of ornaments, such as the red-legged partridge (Alectoris rufa). In this bird, individuals exposed to an exogenous source of free radicals (diquat) during their development produced larger eumelanin-based (black) plumage traits than controls. Here, we show that the same red-legged partridges exposed to diquat simultaneously developed paler carotenoid-based ornaments (red beak and eye rings), and carried lower circulating carotenoid levels as well as lower levels of some lipids involved in carotenoid transport in the bloodstream (i.e., cholesterol). Moreover, partridges treated with a hormone that stimulates eumelanin production (i.e., alpha-melanocyte-stimulating hormone) also increased blood carotenoid levels, but this effect was not mirrored in the expression of carotenoid-based traits. The redness of carotenoid-based ornaments and the size of a conspicuous eumelanic trait (the black bib) were negatively correlated in control birds, suggesting a physiological trade-off during development. These findings contradict recent studies questioning the sensitivity of carotenoids to oxidative stress. Nonetheless, the impact of free radicals on plasma carotenoids seems to be partially mediated by changes in cholesterol metabolism, and not by direct carotenoid destruction/consumption. The results highlight the capacity of oxidative stress to create multiple phenotypes during development through differential effects on carotenoids and melanins, raising questions about evolutionary constraints involved in the production of multiple ornaments by the same organism

    Chernobyl Birds Have Smaller Brains

    No full text
    Background: Animals living in areas contaminated by radioactive material from Chernobyl suffer from increased oxidative stress and low levels of antioxidants. Therefore, normal development of the nervous system is jeopardized as reflected by high frequencies of developmental errors, reduced brain size and impaired cognitive abilities in humans. Alternatively, associations between psychological effects and radiation have been attributed to post-traumatic stress in humans. Methodology/Principal Finding: Here we used an extensive sample of 550 birds belonging to 48 species to test the prediction that even in the absence of post-traumatic stress, there is a negative association between relative brain size and level of background radiation. We found a negative association between brain size as reflected by external head volume and level of background radiation, independent of structural body size and body mass. The observed reduction in brain size in relation to background radiation amounted to 5 % across the range of almost a factor 5,000 in radiation level. Species differed significantly in reduction in brain size with increasing background radiation, and brain size was the only morphological character that showed a negative relationship with radiation. Brain size was significantly smaller in yearlings than in older individuals. Conclusions/Significance: Low dose radiation can have significant effects on normal brain development as reflected by brain size and therefore potentially cognitive ability. The fact that brain size was smaller in yearlings than in older individual

    Teratogenicity and Embryotoxicity in Aquatic Organisms After Pesticide Exposure and the Role of Oxidative Stress

    No full text
    corecore