85 research outputs found

    Neuroticism Modifies Psychophysiological Responses to Fearful Films

    Get PDF
    Background: Neuroticism is a personality component frequently found in anxious and depressive psychiatric disorders. The influence of neuroticism on negative emotions could be due to its action on stimuli related to fear and sadness, but this remains debated. Our goal was thus to better understand the impact of neuroticism through verbal and physiological assessment in response to stimuli inducing fear and sadness as compared to another negative emotion (disgust).¦Methods: Fifteen low neurotic and 18 high neurotic subjects were assessed on an emotional attending task by using film excerpts inducing fear, disgust, and sadness. We recorded skin conductance response (SCR) and corrugator muscle activity (frowning) as indices of emotional expression.¦Results: SCR was larger in high neurotic subjects than in low neurotics for fear relative to sadness and disgust. Moreover, corrugator activity and SCR were larger in high than in low neurotic subjects when fear was induced.¦Conclusion: After decades of evidence that individuals higher in neuroticism experience more intense emotional reactions to even minor stressors, our results indicate that they show greater SCR and expressive reactivity specifically to stimuli evoking fear rather than to those inducing sadness or disgust. Fear processing seems mainly under the influence of neuroticism. This modulation of autonomic activity by neurotics in response to threat/fear may explain their increased vulnerability to anxious psychopathologies such as PTSD (post traumatic stress disorder)

    CD98 Increases Renal Epithelial Cell Proliferation by Activating MAPKs

    Get PDF
    CD98 heavy chain (CD98hc) is a multifunctional transmembrane spanning scaffolding protein whose extracellular domain binds with light chain amino acid transporters (Lats) to form the heterodimeric amino acid transporters (HATs). It also interacts with β1 and β3 integrins by its transmembrane and cytoplasmic domains. This interaction is proposed to be the mechanism whereby CD98 mediates cell survival and growth via currently undefined signaling pathways. In this study, we determined whether the critical function of CD98-dependent amino acid transport also plays a role in cell proliferation and defined the signaling pathways that mediate CD98-dependent proliferation of murine renal inner medullary collecting duct (IMCD) cells. We demonstrate that downregulating CD98hc expression resulted in IMCD cell death. Utilizing overexpression studies of CD98hc mutants that either lacked a cytoplasmic tail or were unable to bind to Lats we showed that CD98 increases serum-dependent cell proliferation by a mechanism that requires the CD98hc cytoplasmic tail. We further demonstrated that CD98-dependent amino acid transport increased renal tubular epithelial cell proliferation by a mechanism that does not require the CD98hc cytoplasmic tail. Both these mechanisms of increased renal tubular epithelial cell proliferation are mediated by Erk and p38 MAPK signaling. Although increased amino transport markedly activated mTor signaling, this pathway did not alter cell proliferation. Thus, these studies demonstrate that in IMCD cells, the cytoplasmic and extracellular domains of CD98hc regulate cell proliferation by distinct mechanisms that are mediated by common MAPK signaling pathways

    Changes in Employment Uncertainty and the Fertility Intention-Realization Link: An Analysis Based on the Swiss Household Panel.

    Get PDF
    How do changes in employment uncertainty matter for fertility? Empirical studies on the impact of employment uncertainty on reproductive decision-making offer a variety of conclusions, ranging from gender and socio-economic differences in the effect of employment uncertainty on fertility intentions and behaviour, to the effect of employment on changes in fertility intentions. This article analyses the association between a change in subjective employment uncertainty and fertility intentions and behaviour by distinguishing male and female partners' employment uncertainty, and examines the variation in these associations by education. Using a sample of men and women living in a couple from the Swiss Household Panel (SHP 2002-2011), we examine through multinomial analysis how changes in employment uncertainty and selected socio-demographic factors are related to individual childbearing decisions. Our results show strong gendered effects of changes in employment uncertainty on the revision of reproductive decisions among the highly educated population

    Metallic, magnetic and molecular nanocontacts

    Get PDF
    Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained

    Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs

    Get PDF
    Second generation sequencing has prompted a number of groups to re-interrogate the transcriptomes of several bacterial and archaeal species. One of the central findings has been the identification of complex networks of small non-coding RNAs that play central roles in transcriptional regulation in all growth conditions and for the pathogen’s interaction with and survival within host cells. Legionella pneumophila is a Gram-negative facultative intracellular human pathogen with a distinct biphasic lifestyle. One of its primary environmental hosts in the free-living amoeba Acanthamoeba castellanii and its infection by L. pneumophila mimics that seen in human macrophages. Here we present analysis of strand specific sequencing of the transcriptional response of L. pneumophila during exponential and post-exponential broth growth and during the replicative and transmissive phase of infection inside A. castellanii. We extend previous microarray based studies as well as uncovering evidence of a complex regulatory architecture underpinned by numerous non-coding RNAs. Over seventy new non-coding RNAs could be identified; many of them appear to be strain specific and in configurations not previously reported. We discover a family of non-coding RNAs preferentially expressed during infection conditions and identify a second copy of 6S RNA in L. pneumophila. We show that the newly discovered putative 6S RNA as well as a number of other non-coding RNAs show evidence for antisense transcription. The nature and extent of the non-coding RNAs and their expression patterns suggests that these may well play central roles in the regulation of Legionella spp

    Electrically controlled nuclear polarization of individual atoms

    Get PDF
    Nuclear spins serve as sensitive probes in chemistry1 and materials science2 and are promising candidates for quantum information processing3,4,5,6. NMR, the resonant control of nuclear spins, is a powerful tool for probing local magnetic environments in condensed matter systems, which range from magnetic ordering in high-temperature superconductors7,8 and spin liquids9 to quantum magnetism in nanomagnets10,11. Increasing the sensitivity of NMR to the single-atom scale is challenging as it requires a strong polarization of nuclear spins, well in excess of the low polarizations obtained at thermal equilibrium, as well as driving and detecting them individually4,5,12. Strong nuclear spin polarization, known as hyperpolarization, can be achieved through hyperfine coupling with electron spins2. The fundamental mechanism is the conservation of angular momentum: an electron spin flips and a nuclear spin flops. The nuclear hyperpolarization enables applications such as in vivo magnetic resonance imaging using nanoparticles13, and is harnessed for spin-based quantum information processing in quantum dots14 and doped silicon15,16,17. Here we polarize the nuclear spins of individual copper atoms on a surface using a spin-polarized current in a scanning tunnelling microscope. By employing the electron–nuclear flip-flop hyperfine interaction, the spin angular momentum is transferred from tunnelling electrons to the nucleus of individual Cu atoms. The direction and magnitude of the nuclear polarization is controlled by the direction and amplitude of the current. The nuclear polarization permits the detection of the NMR of individual Cu atoms, which is used to sense the local magnetic environment of the Cu electron spin.P.W., Y.B. and A.J.H. acknowledge support from Institute for Basic Science under IBS-R027-D1. P.W. acknowledges support from the Alexander von Humboldt Foundation. A.F. acknowledges CONICET (PIP11220150100327 and PUE-22920170100089CO). J.L.L. thanks the ETH Fellowship program for financial support. J.F.-R. thanks FCT, under the project PTDC/FIS-NAN/4662/2014
    corecore