507 research outputs found
Gad65 is recognized by t-cells, but not by antibodies from nod-mice
Since the 64kDa-protein glutamic acid decarboxylase (GAD) is one of the major autoantigens in T-cell mediated Type 1 diabetes, its relevance as a T-cell antigen needs to be clarified. After isolation of splenic T-cells from non-obese diabetic (NOD) mice, a useful model for human Type 1 diabetes, we found that these T-cells proliferate spontaneously when incubated with human GAD65, but only marginally after incubation with GAD67, both recombinated in the baculovirus system. No effect was observed with non-diabetic NOD mice or with T-cells from H-2 identical NON-NOD-H-2g7 control mice. It has been published previously that NOD mice develop autoantibodies against a 64kDa protein detected with mouse beta cells. In immunoprecipitation experiments with sera from the same NOD mice and 33S-methionine-labelled GAD, no autoantibody binding could be detected. We conclude firstly that GAD65 is an important T-cell antigen which is relevant early in the development of Type 1 diabetes and secondly that there is an antigenic epitope in the human GAD65 molecule recognized by NOD T-cells, but not by NOD autoantibodies precipitating conformational epitopes. Our results therefore provide further evidence that GAD65 is a T-cell antigen in NOD mice, being possibly also involved in very early processes leading to the development of human Type 1 diabetes
Current quark mass dependence of nucleon magnetic moments and radii
A calculation of the current-quark-mass-dependence of nucleon static
electromagnetic properties is necessary in order to use observational data as a
means to place constraints on the variation of Nature's fundamental parameters.
A Poincare' covariant Faddeev equation, which describes baryons as composites
of confined-quarks and -nonpointlike-diquarks, is used to calculate this
dependence The results indicate that, like observables dependent on the
nucleons' magnetic moments, quantities sensitive to their magnetic and charge
radii, such as the energy levels and transition frequencies in Hydrogen and
Deuterium, might also provide a tool with which to place limits on the allowed
variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice
Differences in the semantics of prosocial words: an exploration of compassion and kindness
The study of prosocial behaviour has accelerated greatly in the last 20 years. Researchers are exploring different domains of prosocial behaviour such as compassion, kindness, caring, cooperation, empathy, sympathy, love, altruism and morality. While these constructs can overlap, and are sometimes used interchangeably, they also have distinctive features that require careful elucidation. This paper discusses some of the controversies and complexities of describing different (prosocial) mental states, followed by a study investigating the differences between two related prosocial concepts: compassion and kindness. For the study, a scenario-based questionnaire was developed to assess the degree to which a student (N = 222) and a community (N = 112) sample judged scenarios in terms of compassion or kindness. Subsequently, participants rated emotions (e.g. sadness, anxiety, anger, disgust, joy) associated with each scenario. Both groups clearly distinguished kindness from compassion in the scenarios on the basis of suffering. In addition, participants rated compassion-based scenarios as significantly higher on sadness, anger, anxiety and disgust, whereas kindness-based scenarios had higher levels of joy. As a follow-up, a further sample (29 male, 63 female) also rated compassionate scenarios as involving significantly more suffering compared to the kindness scenarios. Although overlapping concepts, compassion and kindness are clearly understood as different processes with different foci, competencies and emotion textures. This has implications for research in prosocial behaviour, and the cultivation of kindness and compassion for psychotherapy and in general.N/
Clinical outcome of skin yaws lesions after treatment with benzathinebenzylpenicillin in a pygmy population in Lobaye, Central African Republic
<p>Abstract</p> <p>Background</p> <p>Yaws is a bacterial skin and bone infectious disease caused by <it>Treponema pallidum pertenue</it>. It is endemic, particularly among pygmies in Central African Republic. To assess the clinical cure rate after treatment with benzathinepenicillin in this population, we conducted a cohort survey of 243 patients in the Lobaye region.</p> <p>Findings and conclusion</p> <p>The rate of healing of lesions after 5 months was 95.9%. This relatively satisfactory level of therapeutic response implies that yaws could be controlled in the Central African Republic. Thus, reinforcement of the management of new cases and of contacts is suggested.</p
Behavioural activation therapy for depression after stroke (BEADS): a study protocol for a feasibility randomised controlled pilot trial of a psychological intervention for post-stroke depression
Background
There is currently insufficient evidence for the clinical and cost-effectiveness of psychological therapies for treating post-stroke depression.
Methods/Design
BEADS is a parallel group feasibility multicentre randomised controlled trial with nested qualitative research and economic evaluation. The aim is to evaluate the feasibility of undertaking a full trial comparing behavioural activation (BA) to usual stroke care for 4 months for patients with post-stroke depression. We aim to recruit 72 patients with post-stroke depression over 12 months at three centres, with patients identified from the National Health Service (NHS) community and acute services and from the voluntary sector. They will be randomly allocated to receive behavioural activation in addition to usual care or usual care alone. Outcomes will be measured at 6 months after randomisation for both participants and their carers, to determine their effectiveness. The primary clinical outcome measure for the full trial will be the Patient Health Questionnaire-9 (PHQ-9). Rates of consent, recruitment and follow-up by centre and randomised group will be reported. The acceptability of the intervention to patients, their carers and therapists will also be assessed using qualitative interviews. The economic evaluation will be undertaken from the National Health Service and personal social service perspective, with a supplementary analysis from the societal perspective. A value of information analysis will be completed to identify the areas in which future research will be most valuable.
Discussion
The feasibility outcomes from this trial will provide the data needed to inform the design of a definitive multicentre randomised controlled trial evaluating the clinical and cost-effectiveness of behavioural activation for treating post-stroke depression
Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma
Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumour suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. Here we show, however, that LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN messenger RNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in neuroblastoma, inversely associated with MYCN amplification, and independently associated with poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of neuroblastoma development with broad implications for cancer pathogenesis.United States. National Institutes of Health (R01GM107536)Alex's Lemonade Stand FoundationHoward Hughes Medical InstituteBoston Children's Hospital. Manton Center for Orphan Disease ResearchNational Institute of General Medical Sciences (U.S.) (T32GM007753
Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes
© 2016 International Society for Microbial Ecology All rights reserved. Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success
X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases
De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.
Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability
‘‘Beet-ing’’ the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude
Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea-level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/ performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided
- …
