28 research outputs found

    Achievements and new knowledge unraveled by metagenomic approaches

    Get PDF
    Metagenomics has paved the way for cultivation-independent assessment and exploitation of microbial communities present in complex ecosystems. In recent years, significant progress has been made in this research area. A major breakthrough was the improvement and development of high-throughput next-generation sequencing technologies. The application of these technologies resulted in the generation of large datasets derived from various environments such as soil and ocean water. The analyses of these datasets opened a window into the enormous phylogenetic and metabolic diversity of microbial communities living in a variety of ecosystems. In this way, structure, functions, and interactions of microbial communities were elucidated. Metagenomics has proven to be a powerful tool for the recovery of novel biomolecules. In most cases, functional metagenomics comprising construction and screening of complex metagenomic DNA libraries has been applied to isolate new enzymes and drugs of industrial importance. For this purpose, several novel and improved screening strategies that allow efficient screening of large collections of clones harboring metagenomes have been introduced

    Investigation of the cytotoxicity of nanozeolites A and Y

    No full text
    Nanosized zeolite particles are important materials for many applications in the field of nanotechnology. The possible adverse effects of these nanomaterials on human health have been scarcely investigated and remain largely unknown. This study reports the synthesis of nanozeolites Y and A with particle sizes of 25-100 nm and adequate colloidal stability for in vitro cytotoxicity experiments. The cytotoxic response of macrophages, epithelial and endothelial cells to these nanocrystals was assessed by determining mitochondrial activity (MTT assay) and cell membrane integrity (LDH leakage assay). After 24 h of exposure, no significant cytotoxic activity was detected for nanozeolite doses up to 500 μg/ml. The addition of fetal calf serum to the cell culture medium during exposure did not significantly change this low response. The nanozeolites showed low toxicity compared with monodisperse amorphous silica nanoparticles of similar size (60 nm). These results may contribute to the application of safe nanozeolites for purposes such as medical imaging, sensing materials, low-k films and molecular separation processes.status: publishe

    Electroweak parameters of the z0 resonance and the standard model

    Get PDF
    Contains fulltext : 124399.pdf (publisher's version ) (Open Access

    A quantitative comparison of recreational spearfishing\ud and linefishing on the Great Barrier Reef: implications\ud for management of multi-sector coral reef fisheries

    No full text
    This study compared the catch composition, catch per unit effort, and incidental impacts of spearfishers and linefishers engaged in a structured fishing program whereby fishing effort was standardized across time, space and skill level. It was found that (1) the catch composition of both groups of fishers overlapped considerably, (2) the numbers of target fish caught by spearfishers (156) and linefishers (168) were not significantly different, (3) the\ud mean size of target fish caught by spearfishers (1.95 § 0.1 kg, §SE) was significantly larger than the mean size of target fish caught by linefishers (1.27 § 0.06 kg), and (4) spear-fishers retained 43% more biomass of target species than did linefishers (304 versus 213 kg, respectively). However, linefishers used »1 kg of bait for every 3 kg of target fish that were captured. Linefishers also caught far more undersized, undesirable, or protected fishes (i.e., bycatch) and caused far more pollution (i.e., lost gear) than did spearfishers. It is concluded that the overall impacts of recreational spearfishing and linefishing on fishery resources of the Great Barrier Reef are broadly equivalent (per unit of fishing effort), and that management regulations should be applied equitably across both fishing sectors. A management strategy of this type will simplify enforcement of fisheries regulations and avoid discrimination of particular fishers in local communities where both fishing methods are socially or\ud culturally important

    HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species

    No full text
    Voltage-gated proton currents regulate generation of reactive oxygen species (ROS) in phagocytic cells. In B cells, stimulation of the B cell antigen receptor (BCR) results in the production of ROS that participate in B cell activation, but the involvement of proton channels is unknown. We report here that the voltage-gated proton channel HVCN1 associated with the BCR complex and was internalized together with the BCR after activation. BCR-induced generation of ROS was lower in HVCN1-deficient B cells, which resulted in attenuated BCR signaling via impaired BCR-dependent oxidation of the tyrosine phosphatase SHP-1. This resulted in less activation of the kinases Syk and Akt, impaired mitochondrial respiration and glycolysis, and diminished antibody responses in vivo. Our findings identify unanticipated functions for proton channels in B cells and demonstrate the importance of ROS in BCR signaling and downstream metabolism
    corecore