63 research outputs found

    Discordant Gene Expression Signatures and Related Phenotypic Differences in Lamin A- and A/C-Related Hutchinson-Gilford Progeria Syndrome (HGPS)

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disorder displaying features reminiscent of premature senescence caused by germline mutations in the LMNA gene encoding lamin A and C, essential components of the nuclear lamina. By studying a family with homozygous LMNA mutation (K542N), we showed that HGPS can also be caused by mutations affecting both isoforms, lamin A and C. Here, we aimed to elucidate the molecular mechanisms underlying the pathogenesis in both, lamin A- (sporadic) and lamin A and C-related (hereditary) HGPS. For this, we performed detailed molecular studies on primary fibroblasts of hetero- and homozygous LMNA K542N mutation carriers, accompanied with clinical examinations related to the molecular findings. By assessing global gene expression we found substantial overlap in altered transcription profiles (13.7%; 90/657) in sporadic and hereditary HGPS, with 83.3% (75/90) concordant and 16.7% (15/90) discordant transcriptional changes. Among the concordant ones we observed down-regulation of TWIST2, whose inactivation in mice and humans leads to loss of subcutaneous fat and dermal appendages, and loss of expression in dermal fibroblasts and periadnexial cells from a LMNAK542N/K542N patient further confirming its pivotal role in skin development. Among the discordant transcriptional profiles we identified two key mediators of vascular calcification and bone metabolism, ENPP1 and OPG, which offer a molecular explanation for the major phenotypic differences in vascular and bone disease in sporadic and hereditary HGPS. Finally, this study correlates reduced TWIST2 and OPG expression with increased osteocalcin levels, thereby linking altered bone remodeling to energy homeostasis in hereditary HGPS

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma

    No full text
    Background Aberrant expression patterns of nuclear lamins have been described in various types of cancer depending on the subtype of cancer, its aggressiveness, proliferative capacity and degree of differentiation. In general, the expression of A-type lamins (lamins A and C) has been correlated with a non-proliferating, differentiated state of cells and tissues. Objectives To establish and compare the expression patterns of lamins in normal human skin, actinic keratosis (AK), squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Methods Expression patterns of the individual lamin subtypes were studied immunohistochemically. The proliferation capacity of the tumour cells was detected using a specific antibody to Ki-67, and was related to the A-type lamin expression patterns. Results In normal skin, lamin A was expressed in the suprabasal cell compartment of the epidermis, whereas the basal cells were mostly unstained. BCCs and SCCs stained positive in most cells, while the epidermis overlying BCC and SCC and the epidermis in AK stained homogeneously and strongly in the basal cells in addition to the suprabasal cells. Lamin C was expressed in some basal cells of normal epidermis while the suprabasal cells stained strongly positive. Both BCCs and SCCs stained strongly positive for lamin C, with the difference that in BCC the staining was predominantly present in nucleolar structures with occasional staining of the nuclear envelope. The epidermis overlying SCC showed strong positivity in the lamina of virtually all cells. The expression of lamin C in the basal cells of AK resembled the expression pattern seen in the epidermis overlying BCC, i.e. a nucleolar staining next to nuclear envelope staining. Lamin B1 and B2 were found in virtually all cells in normal epidermis, AK, BCC, SCC and the epidermis overlying cancer. The percentage of Ki-67-expressing cells was highest in BCC (45%), and gradually decreased via epidermis overlying BCC, AK, SCC, and epidermis overlying SCC, to normal skin (11%). Simultaneous expression of A-type lamins and Ki-67 occurred in approximately 50% of the proliferating (Ki-67 positive) cells in BCC and SCC. Conclusions Significant changes occur in the expression patterns of A-type lamins in both premalignant and malignant lesions of the skin. The profound overlap of lamin A and Ki-67 staining patterns indicates that the proliferating tumour cells may obtain a certain degree of differentiation. Finally, lamin A expression in the basal cell layer of the apparently normal epidermis overlying BCC may suggest its involvement in the primary process

    Both emerin and lamin C depend on lamin A for localization at the nuclear envelope

    Get PDF
    Physical interactions between lamins and emerin were investigated by co-immunoprecipitation of in vitro translated proteins. Emerin interacted with in vitro translated lamins A, B1 and C in co-immunprecipitation reactions. Competition reactions revealed a clear preference for interactions between emerin and lamin C. Structural associations between lamins and emerin were investigated in four human cell lines displaying abnormal expression and/or localisation of lamins A and C. In each cell line absence of lamins A and C from the nuclear envelope (NE) was correlated with mis-localisation of endogenous and exogenous emerin to the ER. In two cell lines that did not express lamin A but did express lamin C, lamin C as well as emerin was mis-localised. When GFP-lamin A was expressed in SW13 cells (which normally express only very low levels of endogenous lamin A and mis-localise endogenous emerin and lamin C), all three proteins became associated with the NE. When GFP-lamin C was expressed in SW13 cells neither the endogenous nor the exogenous lamin C was localised to the NE and emerin remained in the ER. Finally, lamins A and C were selectively eliminated from the NE of HeLa cells using a dominant negative mutant of lamin B1. Elimination of these lamins from the lamina led to the accumulation of emerin as aggregates within the ER. Our data suggest that lamin A is essential for anchorage of emerin to the inner nuclear membrane and of lamin C to the lamina

    The inner nuclear membrane protein Emerin regulates beta-catenin activity by restricting its accumulation in the nucleus

    No full text
    Emerin is a type II inner nuclear membrane (INM) protein of unknown function. Emerin function is likely to be important because, when it is mutated, emerin promotes both skeletal muscle and heart defects. Here we show that one function of Emerin is to regulate the flux of -catenin, an important transcription coactivator, into the nucleus. Emerin interacts with -catenin through a conserved adenomatous polyposis coli (APC)-like domain. When GFP-emerin is expressed in HEK293 cells, -catenin is restricted to the cytoplasm and -catenin activity is inhibited. In contrast, expression of an emerin mutant, lacking its APC-like domain (GFP-emerin), dominantly stimulates -catenin activity and increases nuclear accumulation of -catenin. Human fibroblasts that are null for emerin have an autostimulatory growth phenotype. This unusual growth phenotype arises through enhanced nuclear accumulation and activity of -catenin and can be replicated in wild-type fibroblasts by transfection with constitutively active -catenin. Our results support recent findings that suggest that INM proteins can influence signalling pathways by restricting access of transcription coactivators to the nucleus

    Use of hierarchical cluster analysis to assess the representativeness of a baseline groundwater quality monitoring network: comparison of New Zealand's national and regional groundwater monitoring programs

    No full text
    Baseline monitoring of groundwater quality aims to characterize the ambient condition of the resource and identify spatial or temporal trends. Sites comprising any baseline monitoring network must be selected to provide a representative perspective of groundwater quality across the aquifer(s) of interest. Hierarchical cluster analysis (HCA) has been used as a means of assessing the representativeness of a groundwater quality monitoring network, using example datasets from New Zealand. HCA allows New Zealand's national and regional monitoring networks to be compared in terms of the number of water-quality categories identified in each network, the hydrochemistry at the centroids of these water-quality categories, the proportions of monitoring sites assigned to each water-quality category, and the range of concentrations for each analyte within each water-quality category. Through the HCA approach, the National Groundwater Monitoring Programme (117 sites) is shown to provide a highly representative perspective of groundwater quality across New Zealand, relative to the amalgamated regional monitoring networks operated by 15 different regional authorities (680 sites have sufficient data for inclusion in HCA). This methodology can be applied to evaluate the representativeness of any subset of monitoring sites taken from a larger network
    • ā€¦
    corecore