405 research outputs found
RIBER/DIBER: a software suite for crystal content analysis in the studies of protein–nucleic acid complexes
Summary: Co-crystallization experiments of proteins with nucleic acids do not guarantee that both components are present in the crystal. We have previously developed DIBER to predict crystal content when protein and DNA are present in the crystallization mix. Here, we present RIBER, which should be used when protein and RNA are in the crystallization drop. The combined RIBER/DIBER suite builds on machine learning techniques to make reliable, quantitative predictions of crystal content for non-expert users and high-throughput crystallography
Capillaroscopy -a role in modern rheumatology
Abstract Capillaroscopy is a non-invasive, easy and safe diagnostic technique designed to evaluate small vessels of the microcirculation in the nailfold. It can reveal both the general architecture of capillary rows and fine details of particular vessels. The most important indications for performing capillaroscopy include differential diagnosis of primary and secondary Raynaud's phenomenon, as well as assessment of scleroderma spectrum disorders. In systemic sclerosis capillary abnormalities appear and evolve in a clearly defined sequence called the scleroderma pattern, which correlates with internal organ involvement. Capillaroscopy is also listed as a systemic sclerosis classification criterion recognized by the European League Against Rheumatism (EULAR). With digitized equipment, capillaroscopy allows for precise qualitative and quantitative evaluation of the microcirculation and is a valuable tool in the rheumatologists' daily practice
Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478
The SDSS III APOGEE survey recently identified two new Ori E type
candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating
massive stars whose large (kGauss) magnetic fields confine circumstellar
material around these systems. Our analysis of multi-epoch photometric
observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals
the presence of a 0.7701 day period in each dataset, suggesting the
system is amongst the faster known Ori E analogs. We also see clear
evidence that the strength of H-alpha, H I Brackett series lines, and He I
lines also vary on a 0.7701 day period from our analysis of multi-epoch,
multi-wavelength spectroscopic monitoring of the system from the APO 3.5m
telescope. We trace the evolution of select emission line profiles in the
system, and observe coherent line profile variability in both optical and
infrared H I lines, as expected for rigidly rotating magnetosphere stars. We
also analyze the evolution of the H I Br-11 line strength and line profile in
multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The
observed periodic behavior is consistent with that recently reported by Sikora
and collaborators in optical spectra.Comment: Accepted in ApJ
APOGEE DR14/DR15 Abundances in the Inner Milky Way
We present an overview of the distributions of 11 elemental abundances in the
Milky Way's inner regions, as traced by APOGEE stars released as part of SDSS
Data Release 14/15 (DR14/DR15), including O, Mg, Si, Ca, Cr, Mn, Co, Ni, Na,
Al, and K. This sample spans ~4000 stars with R_GC<4 kpc, enabling the most
comprehensive study to date of these abundances and their variations within the
innermost few kiloparsecs of the Milky Way. We describe the observed abundance
patterns ([X/Fe]-[Fe/H]), compare to previous literature results and to
patterns in stars at the solar Galactic radius, and discuss possible trends
with DR14/DR15 effective temperatures. We find that the position of the
[Mg/Fe]-[Fe/H] "knee" is nearly constant with R_GC, indicating a well-mixed
star-forming medium or high levels of radial migration in the early inner
Galaxy. We quantify the linear correlation between pairs of elements in
different subsamples of stars and find that these relationships vary; some
abundance correlations are very similar between the alpha-rich and alpha-poor
stars, but others differ significantly, suggesting variations in the
metallicity dependencies of certain supernova yields. These empirical trends
will form the basis for more detailed future explorations and for the
refinement of model comparison metrics. That the inner Milky Way abundances
appear dominated by a single chemical evolutionary track and that they extend
to such high metallicities underscore the unique importance of this part of the
Galaxy for constraining the ingredients of chemical evolution modeling and for
improving our understanding of the evolution of the Galaxy as a whole.Comment: Submitted to AAS Journals; revised after referee repor
Connective tissue degeneration: Mechanisms of palmar fascia degeneration (Dupuytren’s disease)
Dupuytren’s disease is a connective tissue disorder of the hand causing excessive palmar fascial fibrosis with associated finger contracture and disability. The aetiology of the disease is heterogeneous, with both genetic and environmental components. The connective tissue is abnormally infiltrated by myofibroblasts that deposit collagen and other extracellular matrix proteins. We describe the clinical profile of Dupuytren’s disease along with current therapeutic schemes. Recent findings on molecular and cellular parameters that are dysregulated in Dupuytren’s disease, which may contribute to the onset of the disease, and the role of resident inflammation promoting fibrosis, are highlighted. We review recent literature focusing on non-myofibroblast cell types (stem cell-like cells), their pro-inflammatory and pro-fibrotic role that may account for abnormal wound healing response
- …