653 research outputs found
A volume comparison theorem for asymptotically hyperbolic manifolds
We define a notion of renormalized volume of an asymptotically hyperbolic
manifold. Moreover, we prove a sharp volume comparison theorem for metrics with
scalar curvature at least -6. Finally, we show that the inequality is strict
unless the metric is isometric to one of the Anti-deSitter-Schwarzschild
metrics
Surveillance Tools Emerging From Search Engines and Social Media Data for Determining Eye Disease Patterns
ImportanceInternet-based search engine and social media data may provide a novel complementary source for better understanding the epidemiologic factors of infectious eye diseases, which could better inform eye health care and disease prevention.ObjectiveTo assess whether data from internet-based social media and search engines are associated with objective clinic-based diagnoses of conjunctivitis.Design, setting, and participantsData from encounters of 4143 patients diagnosed with conjunctivitis from June 3, 2012, to April 26, 2014, at the University of California San Francisco (UCSF) Medical Center, were analyzed using Spearman rank correlation of each weekly observation to compare demographics and seasonality of nonallergic conjunctivitis with allergic conjunctivitis. Data for patient encounters with diagnoses for glaucoma and influenza were also obtained for the same period and compared with conjunctivitis. Temporal patterns of Twitter and Google web search data, geolocated to the United States and associated with these clinical diagnoses, were compared with the clinical encounters. The a priori hypothesis was that weekly internet-based searches and social media posts about conjunctivitis may reflect the true weekly clinical occurrence of conjunctivitis.Main outcomes and measuresWeekly total clinical diagnoses at UCSF of nonallergic conjunctivitis, allergic conjunctivitis, glaucoma, and influenza were compared using Spearman rank correlation with equivalent weekly data on Tweets related to disease or disease-related keyword searches obtained from Google Trends.ResultsSeasonality of clinical diagnoses of nonallergic conjunctivitis among the 4143 patients (2364 females [57.1%] and 1776 males [42.9%]) with 5816 conjunctivitis encounters at UCSF correlated strongly with results of Google searches in the United States for the term pink eye (ρ, 0.68 [95% CI, 0.52 to 0.78]; P < .001) and correlated moderately with Twitter results about pink eye (ρ, 0.38 [95% CI, 0.16 to 0.56]; P < .001) and with clinical diagnosis of influenza (ρ, 0.33 [95% CI, 0.12 to 0.49]; P < .001), but did not significantly correlate with seasonality of clinical diagnoses of allergic conjunctivitis diagnosis at UCSF (ρ, 0.21 [95% CI, -0.02 to 0.42]; P = .06) or with results of Google searches in the United States for the term eye allergy (ρ, 0.13 [95% CI, -0.06 to 0.32]; P = .19). Seasonality of clinical diagnoses of allergic conjunctivitis at UCSF correlated strongly with results of Google searches in the United States for the term eye allergy (ρ, 0.44 [95% CI, 0.24 to 0.60]; P < .001) and eye drops (ρ, 0.47 [95% CI, 0.27 to 0.62]; P < .001).Conclusions and relevanceInternet-based search engine and social media data may reflect the occurrence of clinically diagnosed conjunctivitis, suggesting that these data sources can be leveraged to better understand the epidemiologic factors of conjunctivitis
Recommended from our members
Pink hypopyon in a patient with Serratia marcescens corneal ulceration
A 65-year-old woman presented to the emergency ward at the Massachusetts Eye and Ear Infirmary with 2 days of redness, irritation, photophobia, and diminished vision in her left eye. She was found to have a large central corneal ulcer with a small hypopyon. On the following day, after initiation of broad-spectrum antibiotics, the patient had improved symptoms but now had a 2-mm hypopyon that was distinctly pink in color. Cultures were positive for Serratia marcescens. A pink hypopyon, a rare occurrence, alerted the authors to a causative agent of Enterobacteriacae, either Klebsiella or Serratia. Immediate and intensive treatment was subsequently initiated
The Revolution in Viral Genomics as Exemplified by the Bioinformatic Analysis of Human Adenoviruses
Over the past 30 years, genomic and bioinformatic analysis of human adenoviruses has been achieved using a variety of DNA sequencing methods; initially with the use of restriction enzymes and more currently with the use of the GS FLX pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides and amino acids of coding sequences within the hexon genes of two human adenoviruses (HAdV), HAdV–C2 and HAdV–C5, were compared and analyzed. It was determined that there were three different zones (1–393, 394–1410, 1411–2910) within the hexon gene, of which HAdV–C2 and HAdV–C5 shared zones 1 and 3 with 95% and 89.5% nucleotide identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully sequenced using the Sanger method. Over the next seven years, whole genome analysis and characterization was completed using bioinformatic tools such as blastn, tblastx, ClustalV and FASTA, in order to determine key proteins in species HAdV-A through HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel species, HAdV-G, that was typed and named by the use of whole genome sequencing and phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to advance as the latest sequencing technology enables scientists to add to and expand the resource databases. As a result of these advancements, how novel HAdVs are typed has changed. Bioinformatic analysis has become the revolutionary tool that has significantly accelerated the in-depth study of HAdV microevolution through comparative genomics
Recommended from our members
Evidence of Molecular Evolution Driven by Recombination Events Influencing Tropism in a Novel Human Adenovirus that Causes Epidemic Keratoconjunctivitis
In 2005, a human adenovirus strain (formerly known as HAdV-D22/H8 but renamed here HAdV-D53) was isolated from an outbreak of epidemic keratoconjunctititis (EKC), a disease that is usually caused by HAdV-D8, -D19, or -D37, not HAdV-D22. To date, a complete change of tropism compared to the prototype has never been observed, although apparent recombinant strains of other viruses from species Human adenovirus D (HAdV-D) have been described. The complete genome of HAdV-D53 was sequenced to elucidate recombination events that lead to the emergence of a viable and highly virulent virus with a modified tropism. Bioinformatic and phylogenetic analyses of this genome demonstrate that this adenovirus is a recombinant of HAdV-D8 (including the fiber gene encoding the primary cellular receptor binding site), HAdV-D22, (the ε determinant of the hexon gene), HAdV-D37 (including the penton base gene encoding the secondary cellular receptor binding site), and at least one unknown or unsequenced HAdV-D strain. Bootscanning analysis of the complete genomic sequence of this novel adenovirus, which we have re-named HAdV-D53, indicated at least five recombination events between the aforementioned adenoviruses. Intrahexon recombination sites perfectly framed the ε neutralization determinant that was almost identical to the HAdV-D22 prototype. Additional bootscan analysis of all HAdV-D hexon genes revealed recombinations in identical locations in several other adenoviruses. In addition, HAdV-D53 but not HAdV-D22 induced corneal inflammation in a mouse model. Serological analysis confirmed previous results and demonstrated that HAdV-D53 has a neutralization profile representative of the ε determinant of its hexon (HAdV-D22) and the fiber (HAdV-D8) proteins. Our recombinant hexon sequence is almost identical to the hexon sequences of the HAdV-D strain causing EKC outbreaks in Japan, suggesting that HAdV-D53 is pandemic as an emerging EKC agent. This documents the first genomic, bioinformatic, and biological descriptions of the molecular evolution events engendering an emerging pathogenic adenovirus
Human CCAAT-binding proteins have heterologous subunits
We have characterized three distinct proteins present in HeLa cell extracts that specifically recognize different subsets of transcriptional elements containing the pentanucleotide sequence CCAAT. One of these CCAAT-binding proteins, CP1, binds with high affinity to CCAAT elements present in the human a-globin promoter and the adenovirus major late promoter (MLP). A second protein, CP2, binds with high affinity to a CCAAT element present in the rat γ-fibrinogen promoter. Finally, the third CCAAT-binding protein is nuclear factor I (NF-I), a cellular DNA-binding protein that binds to the adenovirus origin of replication and is required for the initiation of adenoviral replication. CPi, CP2, and NF-I are distinct activities in that each binds to its own recognition site with an affinity that is at least three orders of magnitude higher than that with which it binds to the recognition sites of the other two proteins. Surprisingly, CP1, CP2, and NF-I each appear to recognize their binding site with highest affinity as a multisubunit complex composed of heterologous subunits. In the case of CP1, two different types of subunits form a stable complex in the absence of a DNA-binding site. Moreover, both subunits are present in the CP1-DNA complex. We thus propose the existence of a family of related multisubunit CCAAT-binding proteins that are composed of heterologous subunits
Recommended from our members
Molecular evolution of human adenoviruses
The recent emergence of highly virulent human adenoviruses (HAdVs) with new tissue tropisms underscores the need to determine their ontogeny. Here we report complete high quality genome sequences and analyses for all the previously unsequenced HAdV serotypes (n = 20) within HAdV species D. Analysis of nucleotide sequence variability for these in conjunction with another 40 HAdV prototypes, comprising all seven HAdV species, confirmed the uniquely hypervariable regions within species. The mutation rate among HAdV-Ds was low when compared to other HAdV species. Homologous recombination was identified in at least two of five examined hypervariable regions for every virus, suggesting the evolution of HAdV-Ds has been highly dependent on homologous recombination. Patterns of alternating GC and AT rich motifs correlated well with hypervariable region recombination sites across the HAdV-D genomes, suggesting foci of DNA instability lead to formulaic patterns of homologous recombination and confer agility to adenovirus evolution
Recommended from our members
Predicting the Next Eye Pathogen: Analysis of a Novel Adenovirus
For DNA viruses, genetic recombination, addition, and deletion represent important evolutionary mechanisms. Since these genetic alterations can lead to new, possibly severe pathogens, we applied a systems biology approach to study the pathogenicity of a novel human adenovirus with a naturally occurring deletion of the canonical penton base Arg-Gly-Asp (RGD) loop, thought to be critical to cellular entry by adenoviruses. Bioinformatic analysis revealed a new highly recombinant species D human adenovirus (HAdV-D60). A synthesis of in silico and laboratory approaches revealed a potential ocular tropism for the new virus. In vivo, inflammation induced by the virus was dramatically greater than that by adenovirus type 37, a major eye pathogen, possibly due to a novel alternate ligand, Tyr-Gly-Asp (YGD), on the penton base protein. The combination of bioinformatics and laboratory simulation may have important applications in the prediction of tissue tropism for newly discovered and emerging viruses
Augmenting forearm crutches with wireless sensors for lower limb rehabilitation
Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage
- …