321 research outputs found
Thermally induced solid-solid structural transition of copper nanoparticles through direct geometrical conversion
published_or_final_versio
The crystal structures of sintered copper nanoparticles: A molecular dynamics study
The coalescence of nano-crystals during sintering is often found to result in interesting crystalline structures such as multi-fold twins, and yet the plasticity mechanism accompanying their formation is unclear. In this work, the sintering behavior of two unsupported copper nanoparticles initially at room temperature is investigated by molecular dynamics simulations under the constant-energy ensemble. The results reveal that once the two nanoparticles are brought into contact, they often go through drastic structural changes with the inter-particle grain boundary quickly eliminated, and single- and multi-fold twinning occurs frequently in the coalesced product. Whereas the formation of single twins is found to be via the more usual mechanism of emission of Shockley partials on {1 1 1} planes, the formation of fivefold twins, however, takes place via a novel dislocation-free mechanism involving a series of shear and rigid-body rotation processes caused by elastic waves with amplitudes not corresponding to any allowable Burgers vector in the fcc lattice. Such a lattice-wave, dislocation-free twinning mechanism has never been reported before.postprin
The sintering and densification behaviour of many copper nanoparticles: A molecular dynamics study
postprin
A new dislocation-density-function dynamics scheme for computational crystal plasticity by explicit consideration of dislocation elastic interactions
Current strategies of computational crystal plasticity that focus on individual atoms or dislocations are impractical for real-scale, large-strain problems even with today’s computing power. Dislocation-density based approaches are a way forward but a critical issue to address is a realistic description of the interactions between dislocations. In this paper, a new scheme for computational dynamics of dislocation-density functions is proposed, which takes full consideration of the mutual elastic interactions between dislocations based on the Hirth–Lothe formulation. Other features considered include (i) the continuity nature of the movements of dislocation densities, (ii) forest hardening, (iii) generation according to high spatial gradients in dislocation densities, and (iv) annihilation. Numerical implementation by the finite-volume method, which is well suited for flow problems with high gradients, is discussed. Numerical examples performed for a single-crystal aluminum model show typical strength anisotropy behavior comparable to experimental observations. Furthermore, a detailed case study on small-scale crystal plasticity successfully captures a number of key experimental features, including power-law relation between strength and size, low dislocation storage and jerky deformation.postprin
Size dependence of yield strength simulated by a dislocation-density function dynamics approach
postprin
Analysis of financing mode selection for Gang-Zhu-Au Bridge
2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
- …