1,967 research outputs found
Dynamics-Based Vibration Signal Modeling for Tooth Fault Diagnosis of Planetary Gearboxes
Vibration analysis has been widely used to diagnose gear tooth fault inside a planetary gearbox. However, the vibration characteristics of a planetary gearbox are very complicated. Inside a planetary gearbox, there are multiple vibration sources as several sun-planet gear pairs, and several ring-planet gear pairs are meshing simultaneously. In addition, due to the rotation of the carrier, distance varies between vibration sources and a transducer installed on the planetary gearbox housing. Dynamics-based vibration signal modeling techniques can simulate the vibration signals of a planetary gearbox and reveal the signal generation mechanism and fault features effectively. However, these techniques are basically in the theoretical development stage. Comprehensive experimental validations are required for their future applications in real systems. This chapter describes the methodologies related to vibration signal modeling of a planetary gear set for gear tooth damage diagnosis. The main contents include gear mesh stiffness evaluation, gear tooth crack modeling, dynamic modeling of a planetary gear set, vibration source modeling, modeling of transmission path effect due to the rotation of the carrier, sensor perceived vibration signal modeling, and vibration signal decomposition techniques. The methods presented in this chapter can help understand the vibration properties of planetary gearboxes and give insights into developing new signal processing methods for gear tooth damage diagnosis
Recommended from our members
Review of fan-use rates in field studies and their effects on thermal comfort, energy conservation, and human productivity
This paper is a literature review of field studies on fan-use rates and their effects on thermal comfort, energy conservation, and human productivity. In the assessed literature, fans are more popular in Asia, and more used in mixed-mode (MM) and naturally ventilated (NV) buildings than in air-conditioned (AC) buildings. On the basis of collected fan-use models, probit regression models of fan-use rates and ambient environments were obtained and indicate that the essential trigger of fan-use is a warm environment rather than building types. This result helps us to understand the control behaviors and comfort requirements of occupants. Also, fans could provide benefits in three aspects: widening neutral temperatures, saving energy, and improving occupants’ productivity. First, using fans in buildings elevates the neutral temperature and the upper limit of neutral zone (0.5 thermal sensation scale) averages by about 3 K in ranges from 25.7℃ to 28.7℃ and 27.5℃ to 30.7℃, respectively. Second, fan-use reduces AC-use rates in MM buildings in summer. The regression models based on the collected AC-use rate models illustrate that, on average, AC-use is expected to be reduced by about 15% in summer when fans are used. Third, providing occupants access to fans could improve occupants’ productivity. Based on the limited data available, a 3-K temperature extension is achieved by fans ensuring productivity not decreasing. This review could shed some light on the extension of the neutral temperature range, predictions of MM buildings’ energy consumptions, and methods to enhance productivity. Additionally, this review suggests some valuable directions for future research on fans
Growth of oxygen-induced nanoscale-pyramidal facets on Rh(210) surface
Oxygen-induced nanometer scale faceting of the atomically rough Rh(210) surface has been studied using Auger electron spectroscopy, low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). When the Rh(210) surface is annealed at temperature ≥550 K in oxygen (pressure ≥2×10−8 Torr), it becomes completely covered with nanometer-scale facets. LEED studies reveal that the faceted surface is characterized by three-sided nanoscale pyramids exposing one reconstructed (110) and two {731} faces on each pyramid. STM measurements confirm the LEED results and show that the average facet size ranges from 12 to 21nm when changing annealing temperature from 800 to 1600 K. Moreover, atomically resolved STM images show that the (110) face of faceted Rh(210) exhibits various reconstructions (1×n, n=2–4) depending on oxygen coverage. Faceted Rh(210) is a potential template for studies of structure sensitive reactions
Experimental and Numerical Study on the Slug Characteristics and Flow-Induced Vibration of a Subsea Rigid M-Shaped Jumper
The subsea jumper has become an essential part of subsea production systems as a gas–liquid mixing pipeline connecting the pipeline end manifold (PLEM) to the Christmas tree. During oil and gas transportation, as a common flow pattern, the alternating flow characteristics of the slug flow easily cause pipeline vibration, resulting in pipeline instability or fatigue damage. The present study investigates experimentally and numerically the slug flow characteristics in the subsea M-shaped jumper and its induced vibrations of the jumper. The flow pattern evolution and slug characteristics of the inner slug flow under different gas–liquid velocities are obtained: the slug frequency and slug velocity, as well as the pressure fluctuation and vibration characteristics caused by the slug flow. The results show that the pressure fluctuations in the front and rear parts of the M-type jumper are obviously different. With the increase in the air–water mixing, the two characteristics, the slug frequency, and the slug velocity also increase. The gas velocity has a greater influence on the slug frequency than the liquid velocity. The slug length decreases as the slug frequency increases. Furthermore, numerical simulations under various experimental conditions are carried out. The results show that the simulation results of the pressure data, the slug characteristics, and the induced vibration amplitude are in good agreement with the experimental data.publishedVersio
Recommended from our members
Ceiling-fan-integrated air conditioning: Airflow and temperature characteristics of a sidewall-supply jet interacting with a ceiling fan
Ceiling-Fan-Integrated Air Conditioning (CFIAC) is a proposed system that can greatly increase buildings’ cooling efficiency. In it, terminal supply ducts and diffusers are replaced by vents/nozzles, jetting supply air toward ceiling fans that serve to mix and distribute it within the room. Because of the fans’ air movement, the system provides comfort at higher room temperatures than in conventional commercial/ institutional/retail HVAC. We have experimentally evaluated CFIAC in a test room. This paper covers the distributions of air-speed, temperature, and calculated comfort level throughout the room. Two subsequent papers report tests of human subject comfort and ventilation effectiveness in the same experimental conditions. The room’s supply air emerged from a high-sidewall vent directed toward a ceiling fan on the jet centerline; we also tested this same jet on a fan located off to the side of the jet. Primary variables are: ceiling fan flow volumes in downward and upward directions, supply air volume, and room-vs-supply temperature difference. Velocity, turbulence, and temperature distributions are presented for vertical and horizontal transects of the room. The occupied zone is then evaluated for velocity and temperature non-uniformity, and for comfort as predicted by the ASHRAE Standard 55 elevated air speed method. We show that temperatures are well-mixed and uniform across the room for all of the fan-on configurations, for fans both within or out of the supply jet centerline. The ceiling fan flow dominates the CFIAC airflow, and even though non-uniform is capable of providing comfortable conditions throughout the occupied area of the room
- …