637 research outputs found

    Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant non-specific lipid transfer proteins (nsLTPs) are encoded by multigene families and possess physiological functions that remain unclear. Our objective was to characterize the complete <it>nsLtp </it>gene family in rice and arabidopsis and to perform wheat EST database mining for <it>nsLtp </it>gene discovery.</p> <p>Results</p> <p>In this study, we carried out a genome-wide analysis of <it>nsLtp </it>gene families in <it>Oryza sativa </it>and <it>Arabidopsis thaliana </it>and identified 52 rice <it>nsLtp </it>genes and 49 arabidopsis <it>nsLtp </it>genes. Here we present a complete overview of the genes and deduced protein features. Tandem duplication repeats, which represent 26 out of the 52 rice <it>nsLtp </it>genes and 18 out of the 49 arabidopsis <it>nsLtp </it>genes identified, support the complexity of the <it>nsLtp </it>gene families in these species. Phylogenetic analysis revealed that rice and arabidopsis nsLTPs are clustered in nine different clades. In addition, we performed comparative analysis of rice <it>nsLtp </it>genes and wheat (<it>Triticum aestivum</it>) EST sequences indexed in the UniGene database. We identified 156 putative wheat <it>nsLtp </it>genes, among which 91 were found in the 'Chinese Spring' cultivar. The 122 wheat non-redundant nsLTPs were organized in eight types and 33 subfamilies. Based on the observation that seven of these clades were present in arabidopsis, rice and wheat, we conclude that the major functional diversification within the nsLTP family predated the monocot/dicot divergence. In contrast, there is no type VII nsLTPs in arabidopsis and type IX nsLTPs were only identified in arabidopsis. The reason for the larger number of <it>nsLtp </it>genes in wheat may simply be due to the hexaploid state of wheat but may also reflect extensive duplication of gene clusters as observed on rice chromosomes 11 and 12 and arabidopsis chromosome 5.</p> <p>Conclusion</p> <p>Our current study provides fundamental information on the organization of the rice, arabidopsis and wheat <it>nsLtp </it>gene families. The multiplicity of nsLTP types provide new insights on arabidopsis, rice and wheat <it>nsLtp </it>gene families and will strongly support further transcript profiling or functional analyses of <it>nsLtp </it>genes. Until such time as specific physiological functions are defined, it seems relevant to categorize plant nsLTPs on the basis of sequence similarity and/or phylogenetic clustering.</p

    HNF4α and CDX2 Regulate Intestinal YAP1 Promoter Activity

    Get PDF
    The Hippo pathway is important for tissue homeostasis, regulation of organ size and growth in most tissues. The co-transcription factor yes-associated protein 1 (YAP1) serves as a main downstream effector of the Hippo pathway and its dysregulation increases cancer development and blocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation of YAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene and transcription factors important for intestinal expression. Bioinformatic analysis of caudal type homeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4&alpha;) chromatin immunoprecipitated DNA from differentiated Caco-2 cells revealed potential intragenic enhancers in the YAP1 gene. Transfection of luciferase-expressing YAP1 promoter-reporter constructs containing the potential enhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco-2 and T84 cells. Two potential CDX2 and one HNF4&alpha; binding sites were identified in the enhancer by in silico transcription factor binding site analysis and protein-DNA binding was confirmed in vitro using electrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experiments that CDX2 and HNF4&alpha; bind to the YAP1 enhancer in Caco-2 cells. These results reveal a previously unknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for high expression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4&alpha; binding are important for the YAP1 enhancer activity in intestinal epithelial cells

    Monensin and forskolin inhibit the transcription rate of sucrase-isomaltase but not the stability of its mRNA in Caco-2 cells

    Get PDF
    AbstractTreatment of Caco-2 cells with forskolin (25 μM) or monensin (1 μM) has previously been shown to cause a marked decrease in the level of sucrase-isomaltase (SI) mRNA, without any effect on the expression of dipeptidylpeptidase IV (DPP-IV). In the present work, we report that there is no significant difference in the stability of SI mRNA between control and treated cells. On the other hand, we demonstrate a decrease in the transcription rate of SI mRNA which is sufficient to account for the decrease in the steady-state level of SI mRNA both in forskolin- and monensin-treated Caco-2 cells

    Monensin inhibits the expression of sucrase-isomaltase in Caco-2 cells at the mRNA level

    Get PDF
    AbstractUsing L-[35S]methionine labeling, SDS-PAGE and Northern blot analysis of sucrase-isomaltase mRNA, two different concentrations of monensin were used to delineate in Caco-2 cells the effect of the drug on the conversion of the high mannose to the complex form of sucrase-isomaltase from its dual effect on the biosynthesis of the enzyme and on the rate of glucose consumption. At 0.1 μM the drug has no effect on the rate of glucose consumption and, although it inhibits the conversion of the high mannose to the complex form of the enzyme, it has no effect on the level of sucrase-isomaltase mRNA and on the amount of neosynthesized enzyme. At 1 μM, in addition to its inhibiting effect on the maturation of the enzyme, monensin provokes concomitantly an increase in the rate of glucose consumption and a decrease in the level of sucrase-isomaltase mRNA and in the amount of neosynthesized enzyme. All these effects are reversible within 48 h after removal of the drug

    Glycosyltransferase Family 61 in Liliopsida (Monocot): The Story of a Gene Family Expansion

    Get PDF
    Plant cell walls play a fundamental role in several plant traits and also influence crop use as livestock nutrition or biofuel production. The Glycosyltransferase family 61 (GT61) is involved in the synthesis of cell wall xylans. In grasses (Poaceae), a copy number expansion was reported for the GT61 family, and raised the question of the evolutionary history of this gene family in a broader taxonomic context. A phylogenetic study was performed on GT61 members from 13 species representing the major angiosperm clades, in order to classify the genes, reconstruct the evolutionary history of this gene family and study its expansion in monocots. Four orthogroups (OG) were identified in angiosperms with two of them displaying a copy number expansion in monocots. These copy number expansions resulted from both tandem and segmental duplications during the genome evolution of monocot lineages. Positive selection footprints were detected on the ancestral branch leading to one of the orthogroups suggesting that the gene number expansion was accompanied by functional diversification, at least partially. We propose an OG-based classification framework for the GT61 genes at different taxonomic levels of the angiosperm useful for any further functional or translational biology study

    Bacterial lipid II analogs : novel in vitro substrates for mammalian oligosaccharyl diphosphodolichol diphosphatase (DLODP) activities

    Get PDF
    Mammalian protein N-glycosylation requires the transfer of an oligosaccharide containing 2 residues of N-acetylglucosamine, 9 residues of mannose and 3 residues of glucose (Glc3Man9 GlcNAc2) from Glc3Man9GlcNAc2-diphospho (PP)-dolichol (DLO) onto proteins in the endoplasmic reticulum (ER). Under some pathophysiological conditions, DLO biosynthesis is perturbed, and truncated DLO is hydrolyzed to yield oligosaccharyl phosphates (OSP) via unidentified mechanisms. DLO diphosphatase activity (DLODP) was described in vitro, but its characterization is hampered by a lack of convenient non-radioactive substrates. Our objective was to develop a fluorescence-based assay for DLO hydrolysis. Using a vancomycin-based solid-phase extraction procedure coupled with thin layer chromatography (TLC) and mass spectrometry, we demonstrate that mouse liver membrane extracts hydrolyze fluorescent bacterial lipid II (LII: GlcNAc-MurNAc(dansyl-pentapeptide)-PP-undecaprenol) to yield GlcNAc-MurNAc(dansyl-pentapeptide)-P (GM5P). GM5P production by solubilized liver microsomal proteins shows similar biochemical characteristics to those reported for human hepatocellular carcinoma HepG2 cell DLODP activity. To conclude, we show, for the first time, hydrolysis of lipid II by a eukaryotic enzyme. As LII and DLO are hydrolyzed by the same, or closely related, enzymes, fluorescent lipid II analogs are convenient non-radioactive substrates for investigating DLODP and DLODP-like activities

    Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model

    Get PDF
    The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2 TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry. Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd. Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to 10 lmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that this exposure resulted in a significant accumulation of copper and zinc but not of the other elements measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied. Exposed to 30 lmol/l of the element, manganese showed the highest inhibition and copper the lowest on cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant increase in the accumulation of zinc. There was a significant decrease in manganese from 5 lmol Cd/l exposure, and no variation was observed with copper. Abbreviation: AAS – Atomic absorption spectrometry; CRM– Certified reference material; PBS – Phosphate buffered saline without calcium and magnesium; DMEM – Dubelcco’s modified Eagle’s medium
    • …
    corecore