1,343 research outputs found
Probing the Nuclear Neutron Skin by Low-Energy Dipole Modes
Dipole excitations below the neutron threshold in neutron rich Sn isotopes
are studied theoretically in the Quasiparticle-Phonon Model with HFB single
particle input. Of special interest are the low-lying two-phonon 1- states and
the Pygmy Dipole Resonance (PDR). The evolution of low-energy dipole
excitations with neutron excess is investigated over the Sn isotopic chain
including the experimentally unknown regions close to 132Sn. A dependence of
the PDR strengths and centroid energies on the neutron skin thickness is found.
Despite significant multi-phonon contributions to mean energies and transition
strengths, the PDR states retain their one-phonon character. The fragmentation
pattern is reduced with increasing neutron excess towards the N=82 shell
closure which will be of advantage for future experimental work.Comment: 4 pages, 2 figure
Microscopic Models for Ultrarelativistic Heavy Ion Collisions
In this paper, the concepts of microscopic transport theory are introduced
and the features and shortcomings of the most commonly used ansatzes are
discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics
(UrQMD) transport model is described in great detail. Based on the same
principles as QMD and RQMD, it incorporates a vastly extended collision term
with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin
is explicitly treated for all hadrons. The range of applicability stretches
from GeV/nucleon, allowing for
a consistent calculation of excitation functions from the intermediate energy
domain up to ultrarelativistic energies. The main physics topics under
discussion are stopping, particle production and collective flow.Comment: 129 pages, pagestyle changed using US letter (8.5x11 in) format. The
whole paper (13 Mb ps file) could also be obtained from
ftp://ftp.th.physik.uni-frankfurt.de/pub/urqmd/ppnp2.ps.g
Pygmy Dipol Resonances as a Manifestation of the Structure of the Neutron-Rich Nuclei
Dipole excitations in neutron-rich nuclei below the neutron threshold are
investigated. The method is based on Hartree-Fock-Bogoliubov (HFB) and
Quasiparticle-Phonon Model (QPM) theory. Of our special interest are the
properties of the low-lying 1- Pygmy Resonance and the two-phonon
quadrupole-octupole 1- states in Sn-isotopes including exploratory
investigations for the experimentally unknown mass regions. In particular we
investigate the evolution of the dipole strength function with the neutron
excess. The use of HFB mean-field potentials and s.p. energies is found to
provide a reliable extrapolation into the region off stability.Comment: 8 pages, 3 figures, Proceedings of the International Conference on
Collective Motion in Nuclei Under Extreme Conditions (COMEX1), Paris, France,
10-13 June 200
Future of superheavy element research: Which nuclei could be synthesized within the next few years?
Low values of the fusion cross sections and very short half-lives of nuclei
with Z120 put obstacles in synthesis of new elements. Different nuclear
reactions (fusion of stable and radioactive nuclei, multi-nucleon transfers and
neutron capture), which could be used for the production of new isotopes of
superheavy (SH) elements, are discussed in the paper. The gap of unknown SH
nuclei, located between the isotopes which were produced earlier in the cold
and hot fusion reactions, can be filled in fusion reactions of Ca with
available lighter isotopes of Pu, Am, and Cm. Cross sections for the production
of these nuclei are predicted to be rather large, and the corresponding
experiments can be easily performed at existing facilities. For the first time,
a narrow pathway is found to the middle of the island of stability owing to
possible -decay of SH isotopes which can be formed in ordinary fusion
reactions of stable nuclei. Multi-nucleon transfer processes at near barrier
collisions of heavy (and very heavy, U-like) ions are shown to be quite
realistic reaction mechanism allowing us to produce new neutron enriched heavy
nuclei located in the unexplored upper part of the nuclear map. Neutron capture
reactions can be also used for the production of the long-living neutron rich
SH nuclei. Strong neutron fluxes might be provided by pulsed nuclear reactors
and by nuclear explosions in laboratory conditions and by supernova explosions
in nature. All these possibilities are discussed in the paper.Comment: An Invited Plenary Talk given by Valeriy I. Zagrebaev at the 11th
International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio,
Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in
Journal of Physics: Conference Series (JPCS
Prospects for the discovery of the next new element: Influence of projectiles with Z > 20
The possibility of forming new superheavy elements with projectiles having Z
> 20 is discussed. Current research has focused on the fusion of 48Ca with
actinides targets, but these reactions cannot be used for new element
discoveries in the future due to a lack of available target material. The
influence on reaction cross sections of projectiles with Z > 20 have been
studied in so-called analog reactions, which utilize lanthanide targets
carefully chosen to create compound nuclei with energetics similar to those
found in superheavy element production. The reactions 48Ca, 45Sc, 50Ti, 54Cr +
159Tb, 162Dy have been studied at the Cyclotron Institute at Texas A&M
University using the Momentum Achromat Recoil Spectrometer. The results of
these experimental studies are discussed in terms of the influence of
collective enhancements to level density for compound nuclei near closed
shells, and the implications for the production of superheavy elements. We have
observed no evidence to contradict theoretical predictions that the maximum
cross section for the 249Cf(50Ti, 4n)295120 and 248Cm(54Cr, 4n)298120 reactions
should be in the range of 10-100 fb.Comment: An invited talk given by Charles M. Folden III at the 11th
International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio,
Texas, USA, May 27-June 1, 2012. Also contains information presented by
Dmitriy A. Mayorov and Tyler A. Werke in separate contributions to the
conference. This contribution will appear in the NN2012 Proceedings in
Journal of Physics: Conference Series (JPCS
Combinatorial Hopf algebras in quantum field theory I
This manuscript stands at the interface between combinatorial Hopf algebra
theory and renormalization theory. Its plan is as follows: Section 1 is the
introduction, and contains as well an elementary invitation to the subject. The
rest of part I, comprising Sections 2-6, is devoted to the basics of Hopf
algebra theory and examples, in ascending level of complexity. Part II turns
around the all-important Faa di Bruno Hopf algebra. Section 7 contains a first,
direct approach to it. Section 8 gives applications of the Faa di Bruno algebra
to quantum field theory and Lagrange reversion. Section 9 rederives the related
Connes-Moscovici algebras. In Part III we turn to the Connes-Kreimer Hopf
algebras of Feynman graphs and, more generally, to incidence bialgebras. In
Section10 we describe the first. Then in Section11 we give a simple derivation
of (the properly combinatorial part of) Zimmermann's cancellation-free method,
in its original diagrammatic form. In Section 12 general incidence algebras are
introduced, and the Faa di Bruno bialgebras are described as incidence
bialgebras. In Section 13, deeper lore on Rota's incidence algebras allows us
to reinterpret Connes-Kreimer algebras in terms of distributive lattices. Next,
the general algebraic-combinatorial proof of the cancellation-free formula for
antipodes is ascertained; this is the heart of the paper. The structure results
for commutative Hopf algebras are found in Sections 14 and 15. An outlook
section very briefly reviews the coalgebraic aspects of quantization and the
Rota-Baxter map in renormalization.Comment: 94 pages, LaTeX figures, precisions made, typos corrected, more
references adde
Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell
A model based on chiral SU(3)-symmetry in nonlinear realisation is used for
the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange
nuclear objects (so called MEMOs). The model works very well in the case of
nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic
observables which are known for nuclei and hypernuclei are reproduced
satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next
shell closures in the region of superheavy nuclei. The calculations have been
performed in self-consistent relativistic mean field approximation assuming
spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure
Neutron diffraction study of spin and charge ordering in SrFeO(3-delta)
We report a comprehensive neutron diffraction study of the crystal structure
and magnetic order in a series of single-crystal and powder samples of
SrFeO in the vacancy range . The data
provide detailed insights into the interplay between the oxygen vacancy order
and the magnetic structure of this system. In particular, a crystallographic
analysis of data on Sr8Fe8O23 revealed a structural transition between the
high-temperature tetragonal and a low-temperature monoclinic phase with a
critical temperature T = 75 K, which originates from charge ordering on the Fe
sublattice and is associated with a metal-insulator transition. Our experiments
also revealed a total of seven different magnetic structures of
SrFeO in this range of , only two of which (namely an
incommensurate helix state in SrFeO3 and a commensurate, collinear
antiferromagnetic state in Sr4Fe4O11) had been identified previously. We
present a detailed refinement of some of the magnetic ordering patterns and
discuss the relationship between the magneto-transport properties of
SrFeO samples and their phase composition and magnetic
microstructure.Comment: 37 page
Cutting the long branches: Consilience as a path to unearth the evolutionary history of Gnetales
The Gnetales are one of the most fascinating groups within seed plants. Although the advent of molecular phylogenetics has generated some confidence in their phylogenetic placement of Gnetales within seed plants, their macroevolutionary history still presents many unknowns. Here, we review the reasons for such unknowns, and we focus the discussion on the presence of “long branches” both in their molecular and morphological history. The increased rate of molecular evolution and genome instability as well as the numerous unique traits (both reproductive and vegetative) in the Gnetales have been obstacles to a better understanding of their evolution. Moreover, the fossil record of the Gnetales, though relatively rich, has not yet been properly reviewed and investigated using a phylogenetic framework. Despite these apparent blocks to progress we identify new avenues to enable us to move forward. We suggest that a consilience approach, involving different disciplines such as developmental genetics, paleobotany, molecular phylogenetics, and traditional anatomy and morphology might help to “break” these long branches, leading to a deeper understanding of this mysterious group of plants
- …