90 research outputs found

    Foot Bone in Vivo: Its Center of Mass and Centroid of Shape

    Get PDF
    This paper studies foot bone geometrical shape and its mass distribution and establishes an assessment method of bone strength. Using spiral CT scanning, with an accuracy of sub-millimeter, we analyze the data of 384 pieces of foot bones in vivo and investigate the relationship between the bone's external shape and internal structure. This analysis is explored on the bases of the bone's center of mass and its centroid of shape. We observe the phenomenon of superposition of center of mass and centroid of shape fairly precisely, indicating a possible appearance of biomechanical organism. We investigate two aspects of the geometrical shape, (i) distance between compact bone's centroid of shape and that of the bone and (ii) the mean radius of the same density bone issue relative to the bone's centroid of shape. These quantities are used to interpret the influence of different physical exercises imposed on bone strength, thereby contributing to an alternate assessment technique to bone strength.Comment: 9 pages, 4 figure

    Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility

    Get PDF
    We examined femora from adult AXB/BXA recombinant inbred (RI) mouse strains to identify skeletal traits that are functionally related and to determine how functional interactions among these traits contribute to genetic variability in whole-bone stiffness, strength, and toughness. Randomization of A/J and C57BL/6J genomic regions resulted in each adult male and female RI strain building mechanically functional femora by assembling unique sets of morphologic and tissue-quality traits. A correlation analysis was conducted using the mean trait values for each RI strain. A third of the 66 correlations examined were significant, indicating that many bone traits covaried or were functionally related. Path analysis revealed important functional interactions among bone slenderness, cortical thickness, and tissue mineral density. The path coefficients describing these functional relations were similar for both sexes. The causal relationship among these three traits suggested that cellular processes during growth simultaneously regulate bone slenderness, cortical thickness, and tissue mineral density so that the combination of traits is sufficiently stiff and strong to satisfy daily loading demands. A disadvantage of these functional interactions was that increases in tissue mineral density also deleteriously affected tissue ductility. Consequently, slender bones with high mineral density may be stiff and strong but they are also brittle. Thus, genetically randomized mouse strains revealed a basic biological paradigm that allows for flexibility in building bones that are functional for daily activities but that creates preferred sets of traits under extreme loading conditions. Genetic or environmental perturbations that alter these functional interactions during growth would be expected to lead to loss of function and suboptimal adult bone quality

    Changes in elderly women's health-related quality of life following discontinuation of hormone replacement therapy

    Get PDF
    BACKGROUND: Many women have discontinued hormone replacement therapy (HRT) in view of recent findings. The goal of this study was to determine if HRT discontinuation is associated with changes in health-related quality of life (HRQOL) in elderly women. METHODS: We studied women enrolled in Pennsylvania's Pharmaceutical Assistance Contract for the Elderly (PACE) program, linking prescription claims with data from a longitudinal mail survey. HRQOL measures included the number of days out of the last 30 that physical health was not good and analogous measures for mental health, pain, and interference with activities, as well as a composite "healthy days" measure developed by CDC. Longitudinal analyses focused on 2,357 women who completed surveys in both 2002 and 2003, and who used HRT at baseline (mean age = 75.5, range = 65–102). Propensity scores were used to match HRT continuers and discontinuers according to HRT type, demographics, and baseline HRQOL. Analysis of covariance was used to compare HRQOL change in continuers and discontinuers. RESULTS: Between 2002 and 2003, 43% of HRT users discontinued therapy. Analysis of covariance to examine HRQOL change revealed complex interactions with age. Discontinuers aged 65–74 reported greater increases in days in which mental health was not good (p < .05), fewer "healthy days" (p < .05), more days in which health interfered with activities (p < .01), and more days with pain (p < .01). Among women aged 75–84, HRT discontinuers reported more days in which physical health was not good (p < .01); no other significant effects were observed in this group. Relative to HRT continuers, discontinuers aged 85 and older experienced apparent HRQOL improvements following cessation, with fewer days in which physical health was not good (p < .01), fewer days of poor mental health (p < .05), and more "healthy days" (p < .01). CONCLUSIONS: These results suggest that there are substantial age differences in response to HRT discontinuation. While women aged 65–74 experienced apparent declines in HRQOL following HRT cessation, women aged 85 and older experienced relative improvements. The HRQOL declines observed among younger women underscore the importance of communication between clinicians and patients throughout the discontinuation process. These results also demonstrate the value of HRQOL surveillance as a component of health program administration

    New Suggestions for the Mechanical Control of Bone Remodeling

    Get PDF
    Bone is constantly renewed over our lifetime through the process of bone (re)modeling. This process is important for bone to allow it to adapt to its mechanical environment and to repair damage from everyday life. Adaptation is thought to occur through the mechanosensitive response controlling the bone-forming and -resorbing cells. This report shows a way to extract quantitative information about the way remodeling is controlled using computer simulations. Bone resorption and deposition are described as two separate stochastic processes, during which a discrete bone packet is removed or deposited from the bone surface. The responses of the bone-forming and -resorbing cells to local mechanical stimuli are described by phenomenological remodeling rules. Our strategy was to test different remodeling rules and to evaluate the time evolution of the trabecular architecture in comparison to what is known from μ-CT measurements of real bone. In particular, we tested the reaction of virtual bone to standard therapeutic strategies for the prevention of bone deterioration, i.e., physical activity and medications to reduce bone resorption. Insensitivity of the bone volume fraction to reductions in bone resorption was observed in the simulations only for a remodeling rule including an activation barrier for the mechanical stimulus above which bone deposition is switched on. This is in disagreement with the commonly used rules having a so-called lazy zone

    Trabecular architecture in the sciuromorph femoral head: allometry and functional adaptation

    Get PDF
    Background: Sciuromorpha (squirrels and close relatives) are diverse in terms of body size and locomotor behavior. Individual species are specialized to perform climbing, gliding or digging behavior, the latter being the result of multiple independent evolutionary acquisitions. Each lifestyle involves characteristic loading patterns acting on the bones of sciuromorphs. Trabecular bone, as part of the bone inner structure, adapts to such loading patterns. This network of thin bony struts is subject to bone modeling, and therefore reflects habitual loading throughout lifetime. The present study investigates the effect of body size and lifestyle on trabecular structure in Sciuromorpha. Methods: Based upon high-resolution computed tomography scans, the femoral head 3D inner microstructure of 69 sciuromorph species was analyzed. Species were assigned to one of the following lifestyle categories: arboreal, aerial, fossorial and semifossorial. A cubic volume of interest was selected in the center of each femoral head and analyzed by extraction of various parameters that characterize trabecular architecture (degree of anisotropy, bone volume fraction, connectivity density, trabecular thickness, trabecular separation, bone surface density and main trabecular orientation). Our analysis included evaluation of the allometric signals and lifestyle-related adaptation in the trabecular parameters. Results: We show that bone surface density, bone volume fraction, and connectivity density are subject to positive allometry, and degree of anisotropy, trabecular thickness, and trabecular separation to negative allometry. The parameters connectivity density, bone surface density, trabecular thickness, and trabecular separation show functional signals which are related to locomotor behavior. Aerial species are distinguished from fossorial ones by a higher trabecular thickness, lower connectivity density and lower bone surface density. Arboreal species are distinguished from semifossorial ones by a higher trabecular separation. Conclusion: This study on sciuromorph trabeculae supplements the few non-primate studies on lifestyle-related functional adaptation of trabecular bone. We show that the architecture of the femoral head trabeculae in Sciuromorpha correlates with body mass and locomotor habits. Our findings provide a new basis for experimental research focused on functional significance of bone inner microstructure

    Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development

    Get PDF
    The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically “over-designed” and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance

    Cyclooxygenase-2 inhibition delays the attainment of peak woven bone formation following four-point bending in the rat

    Get PDF
    Fracture healing is retarded in the presence of cyclooxygenase-2 (COX-2) inhibitors, demonstrating an important role of COX-2 in trauma-induced woven bone adaptation. The aim of this experiment was to determine the influence of COX-2 inhibition on the remodeling and consolidation of non-traumatic woven bone produced by mechanical loading. A periosteal woven bone callus was initiated in the right tibia of female Wistar rats following a single bout of four-point-bending, applied as a haversine wave for 300 cycles at a frequency of 2Hz and a magnitude of 65N. Daily injections of Vehicle (VEH: polyethyleneglycol) or the COX-2 inhibitor, DFU (2.0 mg.kg-1 and 0.02mg.kg-1 i.p.), commenced 7 days postloading, and tibiae were examined 2, 3, 4 and 5 weeks postloading. Tibiae were dissected, embedded in polymethylmethacrylate and sectioned for histomorphometric analysis of periosteal woven bone. No significant difference in peak woven bone area was observed between DFU-treated and VEH rats. But treatment with DFU resulted in a temporal defect in woven bone formation, where the achievement of peak woven bone area was delayed by one week. Woven bone remodeling was observed in DFU-treated rats at 21 days post-loading, demonstrating that remodeling of the periosteal callus is not prevented in the presence of a COX-2 inhibitor in the rat. We conclude that COX-2 inhibition does not significantly disrupt the mechanism of woven bone remodeling, but alters its timing
    corecore