1,283 research outputs found
Green Synthesis of Magnetite Nanoparticles (via Thermal Decomposition Method) with Controllable Size and Shape
Magnetite (Fe3O4) nanoparticles with controllable size and shape were synthesized by the thermal decomposition method. In contrast to previously reported thermal decomposition methods, our synthesis method had utilized a much cheaper and less toxic iron precursor, iron acetylacetonate (Fe(acac)3), and environmentally benign and non-toxic polyethylene oxide (PEO) was being used as the solvent and surfactant simultaneously. Fe3O4 nanoparticles of controllable size and shape were prepared by manipulating the synthesis parameters such as precursor concentrations, reaction durations and surfactants
A novel approach to sonographic examination in a patient with a calf muscle tear: a case report
© 2009 Chen et al; licensee Cases Network Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid
Fermionic superfluidity requires the formation of pairs. The actual size of
these fermion pairs varies by orders of magnitude from the femtometer scale in
neutron stars and nuclei to the micrometer range in conventional
superconductors. Many properties of the superfluid depend on the pair size
relative to the interparticle spacing. This is expressed in BCS-BEC crossover
theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type
superfluid of loosely bound and large Cooper pairs to Bose-Einstein
condensation (BEC) of tightly bound molecules. Such a crossover superfluid has
been realized in ultracold atomic gases where high temperature superfluidity
has been observed. The microscopic properties of the fermion pairs can be
probed with radio-frequency (rf) spectroscopy. Previous work was difficult to
interpret due to strong and not well understood final state interactions. Here
we realize a new superfluid spin mixture where such interactions have
negligible influence and present fermion-pair dissociation spectra that reveal
the underlying pairing correlations. This allows us to determine the
spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF
is the Fermi wave number). The pairs are therefore smaller than the
interparticle spacing and the smallest pairs observed in fermionic superfluids.
This finding highlights the importance of small fermion pairs for superfluidity
at high critical temperatures. We have also identified transitions from fermion
pairs into bound molecular states and into many-body bound states in the case
of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated
discussion of fit function
Most vital segment barriers
We study continuous analogues of "vitality" for discrete network flows/paths,
and consider problems related to placing segment barriers that have highest
impact on a flow/path in a polygonal domain. This extends the graph-theoretic
notion of "most vital arcs" for flows/paths to geometric environments. We give
hardness results and efficient algorithms for various versions of the problem,
(almost) completely separating hard and polynomially-solvable cases
Case Report A Case of Acute Hepatitis E Infection in a Patient with Non-Hodgkin Lymphoma Treated Successfully with Ribavirin
We present the case of a man who, following immunosuppressive treatment for non-Hodgkin lymphoma, became infected with viral hepatitis E. Acute hepatitis E virus infection should be considered in patients with deranged liver function on a background of haematological malignancies or immunosuppression, even without travel to endemic regions. Whilst clearance is usually spontaneous in immune-competent individuals, these at-risk groups may develop a more complicated and protracted disease course. Thus awareness is important as additional treatment with ribavirin or pegylated interferon may be required, as in this case, in order to help achieve eradication
Betel nut chewing and incidence of newly diagnosed type 2 diabetes mellitus in Taiwan.
<p>Abstract</p> <p>Background</p> <p>Betel nut chewing is associated with type 2 diabetes mellitus (T2DM) in a recent prevalence study in Taiwan. The present study further investigated its link with the incidence of newly diagnosed T2DM during the years 1992-1996.</p> <p>Methods</p> <p>Population-based datasets of a sample of 93,484 out of 256,036 diabetic patients from 66 medical settings using the National Health Insurance scheme covering > 96% of the population, published population prevalence of betel nut chewing and the governmental census of national population were used for calculation of odds ratios, incidence rates and incidence rate ratios between chewers and never-chewers in the male population for the year 1992 to 1996.</p> <p>Results</p> <p>Ever chewers among the diabetic patients were younger, more obese and had higher prevalence of parental diabetes than never-chewers (all <it>p </it>values < 0.001). Odds ratios for T2DM for ever chewers vs. never-chewers in the age of < 40, 40-49, 50-59, 60-69 and ≥70 years were 1.06 (0.92-1.23), 1.60 (1.45-1.76), 2.12 (1.88-2.39), 3.58 (3.10-4.13) and 7.14 (5.47-9.31), respectively. In 1996, incidence rates (per 100,000 population) in the respective age groups were 19.1, 251.5, 567.3, 721.7 and 971.4 for never-chewers; and were 30.2, 520.9, 2566.9, 11672.8 and 630.3 for ever chewers. The respective incidence rate ratios were 1.58, 2.07, 4.52, 16.17 and 0.65. The age-specific incidence rates and rate ratios were relatively consistent from 1992 to 1996. The differences in obesity and parental diabetes between ever chewers and never-chewers were mostly not statistically significant after age stratification, suggesting the link could not be attributed to these two factors.</p> <p>Conclusions</p> <p>Chewing betel nut is associated with newly diagnosed T2DM, supporting the suggestion that the habit is diabetogenic.</p
The Role of Final State Interactions in Quasielastic Fe Reactions at large
A relativistic finite nucleus calculation using a Dirac optical potential is
used to investigate the importance of final state interactions [FSI] at large
momentum transfers in inclusive quasielastic electronuclear reactions. The
optical potential is derived from first-order multiple scattering theory and
then is used to calculate the FSI in a nonspectral Green's function doorway
approach. At intermediate momentum transfers excellent predictions of the
quasielastic Fe experimental data for the longitudinal response
function are obtained. In comparisons with recent measurements at ~GeV/c the theoretical calculations of give good agreement for
the quasielastic peak shape and amplitude, but place the position of the peak
at an energy transfer of about ~MeV higher than the data.Comment: 13 pages typeset using revtex 3.0 with 6 postscript figures in
accompanying uuencoded file; submitted to Phys. Rev.
Multifractal characterization of stochastic resonance
We use a multifractal formalism to study the effect of stochastic resonance
in a noisy bistable system driven by various input signals. To characterize the
response of a stochastic bistable system we introduce a new measure based on
the calculation of a singularity spectrum for a return time sequence. We use
wavelet transform modulus maxima method for the singularity spectrum
computations. It is shown that the degree of multifractality defined as a width
of singularity spectrum can be successfully used as a measure of complexity
both in the case of periodic and aperiodic (stochastic or chaotic) input
signals. We show that in the case of periodic driving force singularity
spectrum can change its structure qualitatively becoming monofractal in the
regime of stochastic synchronization. This fact allows us to consider the
degree of multifractality as a new measure of stochastic synchronization also.
Moreover, our calculations have shown that the effect of stochastic resonance
can be catched by this measure even from a very short return time sequence. We
use also the proposed approach to characterize the noise-enhanced dynamics of a
coupled stochastic neurons model.Comment: 10 pages, 21 EPS-figures, RevTe
- …