46 research outputs found

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction

    Advancing schizophrenia drug discovery : optimizing rodent models to bridge the translational gap

    Get PDF
    Although our knowledge of the pathophysiology of schizophrenia has increased, treatments for this devastating illness remain inadequate. Here, we critically assess rodent models and behavioural end points used in schizophrenia drug discovery and discuss why these have not led to improved treatments. We provide a perspective on how new models, based on recent advances in the understanding of the genetics and neural circuitry underlying schizophrenia, can bridge the translational gap and lead to the development of more effective drugs. We conclude that previous serendipitous approaches should be replaced with rational strategies for drug discovery in integrated preclinical and clinical programmes. Validation of drug targets in disease-based models that are integrated with translationally relevant end point assessments will reduce the current attrition rate in schizophrenia drug discovery and ultimately lead to therapies that tackle the disease process

    Influence of enriched environment on viral encephalitis outcomes: behavioral and neuropathological changes in albino Swiss mice

    Get PDF
    An enriched environment has previously been described as enhancing natural killer cell activity of recognizing and killing virally infected cells. However, the effects of environmental enrichment on behavioral changes in relation to virus clearance and the neuropathology of encephalitis have not been studied in detail. We tested the hypothesis that environmental enrichment leads to less CNS neuroinvasion and/or more rapid viral clearance in association with T cells without neuronal damage. Stereology-based estimates of activated microglia perineuronal nets and neurons in CA3 were correlated with behavioral changes in the Piry rhabdovirus model of encephalitis in the albino Swiss mouse. Two-month-old female mice maintained in impoverished (IE) or enriched environments (EE) for 3 months were behaviorally tested. After the tests, an equal volume of Piry virus (IEPy, EEPy)-infected or normal brain homogenates were nasally instilled. Eight days post-instillation (dpi), when behavioral changes became apparent, brains were fixed and processed to detect viral antigens, activated microglia, perineuronal nets, and T lymphocytes by immuno- or histochemical reactions. At 20 or 40 dpi, the remaining animals were behaviorally tested and processed for the same markers. In IEPy mice, burrowing activity decreased and recovered earlier (8–10 dpi) than open field (20–40 dpi) but remained unaltered in the EEPy group. EEPy mice presented higher T-cell infiltration, less CNS cell infection by the virus and/or faster virus clearance, less microgliosis, and less damage to the extracellular matrix than IEPy. In both EEPy and IEPy animals, CA3 neuronal number remained unaltered. The results suggest that an enriched environment promotes a more effective immune response to clear CNS virus and not at the cost of CNS damag
    corecore