257 research outputs found
A Simple Grand Unified Relation between Neutrino Mixing and Quark Mixing
It is proposed that all flavor mixing is caused by the mixing of the three
quark and lepton families with vectorlike fermions in 5 + 5-bar multiplets of
SU(5). This simple assumption implies that both V_{CKM} and U_{MNS} are
generated by a single matrix. The entire 3-by-3 complex mass matrix of the
neutrinos M_{nu} is then found to have a simple expression in terms of two
complex parameters and an overall scale. Thus, all the presently unknown
neutrino parameters are predicted. The best fits are for theta_{atm} less than
or approximately 40 degrees. The leptonic Dirac CP phase is found to be
somewhat greater than pi radians.Comment: 10 pages, 4 figures, one table. Typos correcte
A realistic pattern of fermion masses from a five-dimensional SO(10) model
We provide a unified description of fermion masses and mixing angles in the
framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa
couplings of order unity. The space-time is five dimensional and the extra flat
spatial dimension is compactified on the orbifold ,
leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions
are localised. The gauge symmetry breaking is completed by means of a rather
economic scalar sector, avoiding the doublet-triplet splitting problem. The
matter fields live in the bulk and their massless modes get exponential
profiles, which naturally explain the mass hierarchy of the different fermion
generations. Quarks and leptons properties are naturally reproduced by a
mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of
bulk masses in terms of a single parameter. The model provides a realistic
pattern of fermion masses and mixing angles for large values of . It
favours normally ordered neutrino mass spectrum with the lightest neutrino mass
below 0.01 eV and no preference for leptonic CP violating phases. The right
handed neutrino mass spectrum is very hierarchical and does not allow for
thermal leptogenesis. We analyse several variants of the basic framework and
find that the results concerning the fermion spectrum are remarkably stable.Comment: 30 pages, 7 figures, 4 table
Phenomenological Consequences of sub-leading Terms in See-Saw Formulas
Several aspects of next-to-leading (NLO) order corrections to see-saw
formulas are discussed and phenomenologically relevant situations are
identified. We generalize the formalism to calculate the NLO terms developed
for the type I see-saw to variants like the inverse, double or linear see-saw,
i.e., to cases in which more than two mass scales are present. In the standard
type I case with very heavy fermion singlets the sub-leading terms are
negligible. However, effects in the percent regime are possible when
sub-matrices of the complete neutral fermion mass matrix obey a moderate
hierarchy, e.g. weak scale and TeV scale. Examples are cancellations of large
terms leading to small neutrino masses, or inverse see-saw scenarios. We
furthermore identify situations in which no NLO corrections to certain
observables arise, namely for mu-tau symmetry and cases with a vanishing
neutrino mass. Finally, we emphasize that the unavoidable unitarity violation
in see-saw scenarios with extra fermions can be calculated with the formalism
in a straightforward manner.Comment: 22 pages, matches published versio
Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting
We present a class of realistic unified models based on supersymmetric SO(10)
wherein issues related to natural doublet-triplet (DT) splitting are fully
resolved. Using a minimal set of low dimensional Higgs fields which includes a
single adjoint, we show that the Dimopoulos--Wilzcek mechanism for DT splitting
can be made stable in the presence of all higher order operators without having
pseudo-Goldstone bosons and flat directions. The \mu term of order TeV is found
to be naturally induced. A Z_2-assisted anomalous U(1)_A gauge symmetry plays a
crucial role in achieving these results. The threshold corrections to
alpha_3(M_Z), somewhat surprisingly, are found to be controlled by only a few
effective parameters. This leads to a very predictive scenario for proton
decay. As a novel feature, we find an interesting correlation between the d=6
(p\to e^+\pi^0) and d=5 (p\to \nu-bar K+) decay amplitudes which allows us to
derive a constrained upper limit on the inverse rate of the e^+\pi^0 mode. Our
results show that both modes should be observed with an improvement in the
current sensitivity by about a factor of five to ten.Comment: 21 pages LaTeX, 2 figures, Few explanatory sentences and three new
references added, minor typos corrected
Examining leptogenesis with lepton flavor violation and the dark matter abundance
Within a supersymmetric (SUSY) type-I seesaw framework with flavor-blind
universal boundary conditions, we study the consequences of requiring that the
observed baryon asymmetry of the Universe be explained by either thermal or
non-thermal leptogenesis. In the former case, we find that the parameter space
is very constrained. In the bulk and stop-coannihilation regions of mSUGRA
parameter space (that are consistent with the measured dark matter abundance),
lepton flavor-violating (LFV) processes are accessible at MEG and future
experiments. However, the very high reheat temperature of the Universe needed
after inflation (of about 10^{12} GeV) leads to a severe gravitino problem,
which disfavors either thermal leptogenesis or neutralino dark matter.
Non-thermal leptogenesis in the preheating phase from SUSY flat directions
relaxes the gravitino problem by lowering the required reheat temperature. The
baryon asymmetry can then be explained while preserving neutralino dark matter,
and for the bulk or stop-coannihilation regions LFV processes should be
observed in current or future experiments.Comment: 20 pages, 5 figures, 1 tabl
Analysis of Xq27-28 linkage in the international consortium for prostate cancer genetics (ICPCG) families.
BACKGROUND: Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS: Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS: Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS: Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Neutrinos
229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms
Different SO(10) Paths to Fermion Masses and Mixings
Recently SO(10) models with type-II see-saw dominance have been proposed as a
promising framework for obtaining Grand Unification theories with approximate
Tri-bimaximal (TB) mixing in the neutrino sector. We make a general study of
SO(10) models with type-II see-saw dominance and show that an excellent fit can
be obtained for fermion masses and mixings, also including the neutrino sector.
To make this statement more significant we compare the performance of type-II
see-saw dominance models in fitting the fermion masses and mixings with more
conventional models which have no built-in TB mixing in the neutrino sector.
For a fair comparison the same input data and fitting procedure is adopted for
all different theories. We find that the type-II dominance models lead to an
excellent fit, comparable with the best among the available models, but the
tight structure of this framework implies a significantly larger amount of fine
tuning with respect to other approaches.Comment: 24 pages, References and minor wording changes adde
The Hot (Invisible?) Hand: Can Time Sequence Patterns of Success/Failure in Sports Be Modeled as Repeated Random Independent Trials?
The long lasting debate initiated by Gilovich, Vallone and Tversky in is revisited: does a “hot hand” phenomenon exist in sports? Hereby we come back to one of the cases analyzed by the original study, but with a much larger data set: all free throws taken during five regular seasons () of the National Basketball Association (NBA). Evidence supporting the existence of the “hot hand” phenomenon is provided. However, while statistical traces of this phenomenon are observed in the data, an open question still remains: are these non random patterns a result of “success breeds success” and “failure breeds failure” mechanisms or simply “better” and “worse” periods? Although free throws data is not adequate to answer this question in a definite way, we speculate based on it, that the latter is the dominant cause behind the appearance of the “hot hand” phenomenon in the data
- …
