104 research outputs found

    Replacement of Maize/Soybean Meal Concentrate by High Moisture Maize Grain Plus Wholeseed Soybean Silage for Cattle

    Get PDF
    Ensiling high moisture maize grain with wholeseed soybean can increase quality of silage, mainly in relation to protein and energy (Jobim et al., 2002) working as concentrate. This fact contributes to reduced use of concentrate and costs for milk and beef production, and costs related to grain storage on the farms. The objective of this study was to evaluate the nutritive value of high moisture maize grain plus wholeseed soybean silage through partial and total digestibility in cattle

    Identificação e características de forrageiras perenes para consórcio com milho.

    Get PDF
    bitstream/item/99437/1/cap3.pd

    Inoculação de bactérias promotoras do crescimento vegetal em Urochloa Ruziziensis

    Get PDF
    Título em inglês: Inoculation of plant growth-promoting bacteria in Urochloa Ruziziensis Título em espanhol: Inoculación de bacterias promotoras del crecimiento vegetal en Urochloa Ruziziensi

    Climate change and future scenarios for palisade grass production in the state of São Paulo, Brazil

    Get PDF
    The objective of this work was to analyze future scenarios for palisade grass yield subjected to climate change for the state of São Paulo, Brazil. An empirical crop model was used to estimate yields, according to growing degree-days adjusted by one drought attenuation factor. Climate data from 1963 to 2009 of 23 meteorological stations were used for current climate conditions. Downscaled outputs of two general circulation models were used to project future climate for the 2013-2040 and 2043-2070 periods, considering two contrasting scenarios of temperature and atmospheric CO2 concentration increase (high and low). Annual dry matter yield should be from 14 to 42% higher than the current one, depending on the evaluated scenario. Yield variation between seasons (seasonality) and years is expected to increase. The increase of dry matter accumulation will be higher in the rainy season than in the dry season, and this result is more evident for soils with low-water storage capacity. The results varied significantly between regions (60%). Despite their higher climate potential, warmer regions will probably have a lower increase in future forage production

    Levels of nutrients and grain yield of maize intercropped with signalgrass (Brachiaria) in different arrangements of plants

    Get PDF
    Competition between maize and signalgrass can economically cripple the intercropping by the reduced yield of maize and dry matter content of the forage. In seeking to define plant arrangements which make this system more efficient, this research was held with the objective of assessing the effects of interference of densities of signalgrass (Urochloa Brizantha) on nutrition and on maize grain yield. Two field experiments were conducted in a randomized block design with four replications. Treatments were arranged similarly in both experiments, in a 2 x 4 factorial design, the first factor being the dose of Nicosulfuron herbicide applied (0 and 8 g ha-1) and the second factor being the forage seeding rates (0, 2, 4 and 6 kg of seeds per hectare). The interference of signalgrass reduced foliar nitrogen, potassium and phosphorus content in maize plants intercropped with the forage. Higher values of grain yield were observed with the reduction of the spacing and the application of the recommended herbicide underdose (8 g ha-1). It was concluded that, regardless of the seeding density of U. Brizantha, reducing the maize seeding inter-rows spacing, combined with the application of an underdose of Nicosulfuron, caused a positive effect by reducing the initial forage growth, resulting in less interference of Urochloa brizantha on nutrient uptake by the maize plants and grain yield of the crop

    Reclamation status of a degraded pasture based on soil health indicators

    Get PDF
    Pasture degradation is a concern, especially in susceptible sandy soils for which strategies to recover them must be developed. Microbiological and biochemical soil health indicators are useful in the guindace of soil management practices and sustainable soil use. We assessed the success of threePanicum maximum Jacq. cultivars in the reclamation of a pasture in a sandy Typic Acrudox in the northwest of the state of Paraná, Brazil, based on soil health indicators. On a formerly degraded pasture withUrochloa brizantha (Hochst. ex A. Rich.) R.D. Webster, a trial with threeP. maximum (cv. Massai, Tanzânia, or Mombaça) was conducted. Lime and phosphate were applied at set-up, and mineral N and K as topdressing. A remnant of degraded pasture adjacent to the trial was used as control. Twenty-three chemical, physical, microbiological and biochemical attributes were assessed for the 0-10 cm topsoil. The procedures for reclamation improved most of the indicators of soil health in relation to the degraded pasture, such as soil P, mineral N, microbial biomass C, ammonification rate, dehydrogenase activity and acid phosphatase. CO2 evolution decreased, whereas microbial biomass C increased in the pasture under reclamation, resulting in a lower metabolic quotient (qCO2) that points to a decrease in metabolic stress of the microbial community. The reclamation of the pasture withP. maximum, especially cv. Mombaça, were evidenced by improvements in the microbiological and biochemical soil health indicators, showing a recovery of processes related to C, N and P cycling in the soil
    corecore